• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calculation of available transfer capability of transmission networks including static and dynamic security

Shaaban Mohamed, Mohamed Abdel Moneim. January 2002 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
2

A quantitative analysis of indices to assess voltage quality on an electricity transmission network

Venter, Erika 04 June 2012 (has links)
M.Phil. / Nearly every reference document, national and international standard, text book or web page discussing the topic of Power Quality has an introduction that refers to the demand from customers and regulators for better and more detailed reporting from electrical power utilities with regards power quality. Previously power quality was an internal utility measure with no external input. Today contracts are negotiated with customers and limits are set by regulators with regards Power Quality objectives. Current assessment methods defined in various international guidelines and standards recommend that for a “high percentage” of the assessment period, the measured performance must remain below specified levels (“compatibility levels” or contracted levels). In the case of NRS048-2:2008 the assessment criterion for voltage harmonics and voltage unbalance is based on 95% of the time and 95% of the space for an assessment period of 1 week, and that for voltage magnitude is based on 95% of the time and 95% of the space, with the additional requirement that no two consecutive values exceed the specified levels. A statistical research study was undertaken to analyse the performance of the Eskom transmission system in order to determine the impact of using different assessment methods (100% of the week, 99% of the week, 95% of the day etc). This thesis will present the results of the analysis done on the data in the Quality of Supply database. The analysis will mainly focus on the voltage waveform parameters: harmonic THD; unbalance; and regulation as measured in the Eskom Quality of Supply database. The objective of this thesis is to determine how the current performance of an electrical transmission network is characterised by different assessment methods. This thesis makes a contribution to the current international debate on appropriate assessment criteria and the conditions (“normal” vs. “abnormal”) under which these would apply.
3

On Reliability Methods Quantifying Risks to Transfer Capability in Electric Power Transmission Systems

Setréus, Johan January 2009 (has links)
<p><p>In the operation, planning and design of the transmission system it is of greatest concern to quantify the reliability security margin to unwanted conditions. The deterministic N-1 criterion has traditionally provided this security margin to reduce the consequences of severe conditions such as widespread blackouts. However, a deterministic criterion does not include the likelihood of different outage events. Moreover, experience from blackouts shows, e.g. in Sweden-Denmark September 2003, that the outages were not captured by the N-1 criterion. The question addressed in this thesis is how this system security margin can be quantified with probabilistic methods. A quantitative measure provides one valuable input to the decision-making process of selecting e.g. system expansions alternatives and maintenance actions in the planning and design phases. It is also beneficial for the operators in the control room to assess the associated security margin of existing and future network conditions.</p><p>This thesis presents a method that assesses each component's risk to an insufficient transfer capability in the transmission system. This shows on each component's importance to the system security margin. It provides a systematic analysis and ranking of outage events' risk of overloading critical transfer sections (CTS) in the system. The severity of each critical event is quantified in a risk index based on the likelihood of the event and the consequence of the section's transmission capacity. This enables a comparison of the risk of a frequent outage event with small CTS consequences, with a rare event with large consequences.</p><p>The developed approach has been applied for the generally known Roy Billinton Test System (RBTS). The result shows that the ranking of the components is highly dependent on the substation modelling and the studied system load level.</p><p>With the restriction of only evaluating the risks to the transfer capability in a few CTSs, the method provides a quantitative ranking of the potential risks to the system security margin at different load levels. Consequently, the developed reliability based approach provides information which could improve the deterministic criterion for transmission system planning.</p></p>
4

Improvement of steady state and voltage stability of a strong network overlayed with higher voltage transmission lines using phase shifting transformers.

Molapo, Reentseng Majara. January 2011 (has links)
This research work deals with the application of the phase shifting transformer in improving the steady state performance and voltage stability of transmission network that has transmission lines at different voltage levels running in parallel to each other. Transmission power system networks are usually developed using lines built at a certain voltage level initially. As power demand requirements increase, building of the new lines at the same voltage level becomes necessary. However, lesser and lesser improvements in transfer capacity are realised when the additional lines are built. This prompts utilities to consider higher voltages for future lines as these have a higher transfer capacity. Utilities usually lay, i.e., they build in parallel, newer, higher voltage transmission lines along side the existing lower voltage ones. Power flow in power system is mainly influenced by impedances of equipment. If the combined impedance of the existing, lower voltage transmission system is relatively less than the impedance of the newer, higher voltage ones, power may primarily flow through it rather than via the newer, parallel higher voltage transmission network. This may lead to a serious underutilisation of the newer infrastructure with a higher transmission capacity. Transmission networks similar to the one described above are common throughout the world. This study was undertaken towards finding solutions to the problem of under utilisation of such transmission lines. The study was performed by first reviewing the literature on the use of phase shifting transformers to redirect power flow in transmission networks throughout the world. This was followed by analysis of the theory on how and what determines the power flow in power networks. Several simulations of varying the phase of the phase shifting transformer were performed on the Cape network, as a case study, to investigate the impact on the power flow distribution and voltage stability performance of the 765 kV and 400 kV transmission lines carrying power to the Western Cape. In this dissertation, it has been demonstrated that a phase shifting transformer can be used to alter the power flow patterns so that power flows are restructured or redistributed, such that power which originally flowed via the low impedance, lower voltage system is transferred to the parallel higher voltage transmission system of lines. It is shown that once the power flows are redistributed, steady state and voltage stability performance of the total system can be enhanced and an increase in its power transfer capacity can be realised. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2011.
5

An analysis and improvement of selected features of power quality of grid-tied alternative energy systems

Gupta, Gunjan January 2018 (has links)
Thesis (PhD (Electrical Engineering))--Cape Peninsula University of Technology, 2018. / Electrical energy can be easily used and converted to other forms of energy for various applications. Technological advancement increases the dependency on electricity to a great extent. Various internal and external factors are responsible for the bad quality of power in power systems. The performance of the system is greatly affected by the presence of harmonics, as well as voltage and frequency variations, which leads to the malfunctioning of the device and decline of power quality and supply at load side. The reactive power compensation is carried out for better power quality. The literature survey is done to find the best and efficient scheme for reactive power compensation and mitigation of various power quality problems. The devices which are used to measure various power quality factors are discussed. Various mitigating schemes are surveyed in order to compensate reactive power and to improve the power quality at the distribution end. The integration of the most widely used renewable energy, wind energy in the distribution system creates technical issues like stability of the grid, harmonic distortion, voltage regulation, active and reactive power compensation etc. which are restricted to IEC and IEEE standards. One of the topics this thesis addresses is regulation in the reactive power generated along with voltage regulation by using an effective power electronics device known as a STATCOM. The main power quality factors like overvoltage and voltage flickers are mitigated by establishing STATCOMs in small wind farms. The wind farms are equipped with three wind turbines. These three wind turbines found in the wind farm can be operated together or one after another with an introduced delay. A glitch in even a little piece of a power grid can result in loss of efficiency, income and at times even life. In this manner, it is basic to outline a system which can distinguish the faults of the power system and take a faster response to recover it back to required reactive power. Two devices STATCOM and D-STATCOM are used for this purpose in this thesis. The D-STATCOM circuit and operating principle are also discussed in thesis. Different topologies of D-STATCOM discussed with their benefits and shortcomings. The voltage, current and hybrid technologies of D-STATCOM are also discussed.
6

On Reliability Methods Quantifying Risks to Transfer Capability in Electric Power Transmission Systems

Setréus, Johan January 2009 (has links)
In the operation, planning and design of the transmission system it is of greatest concern to quantify the reliability security margin to unwanted conditions. The deterministic N-1 criterion has traditionally provided this security margin to reduce the consequences of severe conditions such as widespread blackouts. However, a deterministic criterion does not include the likelihood of different outage events. Moreover, experience from blackouts shows, e.g. in Sweden-Denmark September 2003, that the outages were not captured by the N-1 criterion. The question addressed in this thesis is how this system security margin can be quantified with probabilistic methods. A quantitative measure provides one valuable input to the decision-making process of selecting e.g. system expansions alternatives and maintenance actions in the planning and design phases. It is also beneficial for the operators in the control room to assess the associated security margin of existing and future network conditions. This thesis presents a method that assesses each component's risk to an insufficient transfer capability in the transmission system. This shows on each component's importance to the system security margin. It provides a systematic analysis and ranking of outage events' risk of overloading critical transfer sections (CTS) in the system. The severity of each critical event is quantified in a risk index based on the likelihood of the event and the consequence of the section's transmission capacity. This enables a comparison of the risk of a frequent outage event with small CTS consequences, with a rare event with large consequences. The developed approach has been applied for the generally known Roy Billinton Test System (RBTS). The result shows that the ranking of the components is highly dependent on the substation modelling and the studied system load level. With the restriction of only evaluating the risks to the transfer capability in a few CTSs, the method provides a quantitative ranking of the potential risks to the system security margin at different load levels. Consequently, the developed reliability based approach provides information which could improve the deterministic criterion for transmission system planning.
7

A Comprehensive Approach for Bulk Power System Reliability Assessment

Yang, Fang 03 April 2007 (has links)
Abstract The goal of this research is to advance the state of the art in bulk power system reliability assessment. Bulk power system reliability assessment is an important procedure at both power system planning and operating stages to assure reliable and acceptable electricity service to customers. With the increase in the complexity of modern power systems and advances in the power industry toward restructuring, the system models and algorithms of traditional reliability assessment techniques are becoming obsolete as they suffer from nonrealistic system models and slow convergence (even non-convergence) when multi-level contingencies are considered and the system is overstressed. To allow more rigor in system modeling and higher computational efficiency in reliability evaluation procedures, this research proposes an analytically-based security-constrained adequacy evaluation (SCAE) methodology that performs bulk power system reliability assessment. The SCAE methodology adopts a single-phase quadratized power flow (SPQPF) model as a basis and encompasses three main steps: (1) critical contingency selection, (2) effects analysis, and (3) reliability index computations. In the critical contingency selection, an improved contingency selection method is developed using a wind-chime contingency enumeration scheme and a performance index approach based on the system state linearization technique, which can rank critical contingencies with high accuracy and efficiency. In the effects analysis for selected critical contingencies, a non-divergent optimal quadratized power flow (NDOQPF) algorithm is developed to (1) incorporate major system operating practices, security constraints, and remedial actions in a constrained optimization problem and (2) guarantee convergence and provide a solution under all conditions. This algorithm is also capable of efficiently solving the ISO/RTO operational mode in deregulated power systems. Based on the results of the effects analysis, reliability indices that provide a quantitative indication of the system reliability level are computed. In addition, this research extends the proposed SCAE framework to include the effects of protection system hidden failures on bulk power system reliability. The overall SCAE methodology is implemented and applied to IEEE reliability test systems, and evaluation results demonstrate the expected features of proposed advanced techniques. Finally, the contributions of this research are summarized and recommendations for future research are proposed.

Page generated in 0.1348 seconds