1 |
Wheel loader powertrain modeling for real-time vehicle dynamic simulationTinker, Matthew Michael 01 January 2006 (has links)
No description available.
|
2 |
Effect of Temperature on Lithium-Iron Phosphate Battery Performance and Plug-in Hybrid Electric Vehicle RangeLo, Joshua January 2013 (has links)
Increasing pressure from environmental, political and economic sources are driving the development of an electric vehicle powertrain. The advent of hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs) bring significant technological and design challenges. The success of electric vehicle powertrains depends heavily on the robustness and longevity of the on-board energy storage system or battery. Currently, lithium-ion batteries are the most suitable technology for use in electrified vehicles. The majority of literature and commercially available battery performance data assumes a working environment that is at room temperature. However, an electrified vehicle battery will need to perform under a wide range of temperatures, including the extreme cold and hot environments. Battery performance changes significantly with temperature, so the effects of extreme temperature operation must be understood and accounted for in electrified vehicle design. In order to meet the aggressive development schedules of the automotive industry, electrified powertrain models are often employed. The development of a temperature-dependent battery model with an accompanying vehicle model would greatly enable model based design and rapid prototyping efforts.
This paper empirically determines the performance characteristics of an A123 lithium iron-phosphate battery, re-parameterizes the battery model of a vehicle powertrain model, and estimates the electric range of the modeled vehicle at various temperatures. The battery and vehicle models will allow future development of cold-weather operational strategies. As expected the vehicle range is found to be far lower with a cold battery back. This effect is seen to be much more pronounced in the aggressive US06 drive cycle where the all-electric range was found to be 44% lower at -20°C than at 25°C. Also it was found that there was minimal impact of temperature on range above 25°C
|
3 |
Effect of Temperature on Lithium-Iron Phosphate Battery Performance and Plug-in Hybrid Electric Vehicle RangeLo, Joshua January 2013 (has links)
Increasing pressure from environmental, political and economic sources are driving the development of an electric vehicle powertrain. The advent of hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs) bring significant technological and design challenges. The success of electric vehicle powertrains depends heavily on the robustness and longevity of the on-board energy storage system or battery. Currently, lithium-ion batteries are the most suitable technology for use in electrified vehicles. The majority of literature and commercially available battery performance data assumes a working environment that is at room temperature. However, an electrified vehicle battery will need to perform under a wide range of temperatures, including the extreme cold and hot environments. Battery performance changes significantly with temperature, so the effects of extreme temperature operation must be understood and accounted for in electrified vehicle design. In order to meet the aggressive development schedules of the automotive industry, electrified powertrain models are often employed. The development of a temperature-dependent battery model with an accompanying vehicle model would greatly enable model based design and rapid prototyping efforts.
This paper empirically determines the performance characteristics of an A123 lithium iron-phosphate battery, re-parameterizes the battery model of a vehicle powertrain model, and estimates the electric range of the modeled vehicle at various temperatures. The battery and vehicle models will allow future development of cold-weather operational strategies. As expected the vehicle range is found to be far lower with a cold battery back. This effect is seen to be much more pronounced in the aggressive US06 drive cycle where the all-electric range was found to be 44% lower at -20°C than at 25°C. Also it was found that there was minimal impact of temperature on range above 25°C
|
4 |
Modelování a simulace pohonu mobilního pracovního stroje / Modeling and Simulation of Mobile working machine PowertrainZavadinka, Peter January 2009 (has links)
Táto diplomová práca sa zaoberá vytvorením dynamického modelu mobilného pracovného stroja. Ciežom práce je vytvorenie blokového modelu pohonu štvorkolesového mobilného pracovného stroja. Model hydrostatického prevodu bol dodaný firmou Sauer-Danfoss. Model mobilného pracovného stroja bol vytvorený v programe MATLAB-Simulink. Dalšou časťou práce je výber typu riadenia hydrostatického prevodu a návrh riadiaceho algoritmu hydrostatického prevodu. Výstupom práce je blokový matematicko-fyzikálny model pohonu štvorkolesového mobilného pracovného stroja spolu s riadiacim algoritmom hydrostatického prevodu v prostredí MATLAB-Simulink.
|
5 |
Simulationsgestützter Variantenvergleich des Antriebsstranges einer WerkzeugmaschineFreigang, Tino 02 July 2018 (has links)
Gekoppelte Umlaufrädergetriebe bilden den Antriebsstrang von Orbital-
Bearbeitungsmaschinen (OBM). Aufgrund der Variantenzahl einsetzbarer
Umlaufrädergetriebekombinationen ist die konstruktive Auslegung dieser
Antriebsstränge anspruchsvoll.
Der Vortrag liefert unter Verwendung der Mehrkörpersimulation (Software:
SIMULATION X) einen Beitrag einer systematischen Herangehensweise zur
Ermittlung wesentlicher Eingangsgrößen der komplexen Getriebedimensionierung.
Aussagen über wirksame Drehmomente, Drehzahlen, Verzahnungskräfte und
Verlagerungen des TCP unter spezieller Betrachtung des dynamischen
Systemverhaltens der Antriebsstränge werden getroffen. Variantenrechnungen
ermöglichen zudem den Vergleich verschiedener Getriebe- und
Maschinenelementkonfigurationen.
Vertiefend wird auf die erweiterte Modellierung der Besonderheiten der
Getriebearchitektur mit spielbehafteten, gekoppelten Umlaufrädergetriebe und
diverser Maschinenelemente, z.B. Hauptspindellagerung oder Wälzschraubtriebe,
eingegangen. Maßnahmen der Modellvereinfachung mit dem Ziel reduzierter
Rechenzeiten bei erhöhter Modellrobustheit werden dargestellt.
Richtlinien der Modellverifikation sowie Konstruktionsvorgaben für den
getriebebasierten Nebenantriebsstrang werden abschließend geschlussfolgert.
|
Page generated in 0.0895 seconds