• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aquifer storage and recovery in saline aquifers

Chen, Yiming 27 August 2014 (has links)
Aquifer storage and recovery (ASR) is a particular scheme of artificial recharge of groundwater by injecting fresh water into aquifers and subsequently recovering the stored water during times of peak demand or extended drought. In the era of combating climate change, ASR, as an effective means for water reuse and sustainable management of water resources in concert with the natural environment, represents a huge opportunity for climate change adaptation to mitigate water availability stress.The success of an ASR scheme is quantified by the recovery efficiency (RE), defined as the volume of stored water that can be recovered for supply purposes divided by the total volume injected. It is not uncommon that RE may be significantly lower than 100% because of the water quality changes as a consequence of the mixing between the injected water and native groundwater and the interaction between injected water and soil. Thus, the key of a successful ASR scheme is (1) to select appropriate aquifers and (2) to design optimal operational processes to build up a bubble of injected water with minimized negative impact from such mixing and interaction. To achieve this, this thesis develops an integrated knowledge base with sound interdisciplinary science and understanding of the mixing processes under operational ASR management in aquifers with various hydrogeological conditions. Analytical and numerical modeling are conducted to improve the scientific understanding of mixing processes involved in ASR schemes and to provide specific technical guidance for improving ASR efficiency under complex hydrogeological conditions. (1) An efficient approach is developed to analytically evaluate solute transport in a horizontal radial flow field with a multistep pumping and examine the ASR performance in homogeneous, isotropic aquifer with advective and dispersive transport processes. (2) Numerical and analytical studies are conducted to investigate the efficiency of an ASR system in dual-domain aquifers with mass transfer limitations under various hydrogeological and operational conditions. Simple and effective relationships between transport parameters and ASR operational parameters are derived to quantify the effectiveness and ascertain the potential of ASR systems with mass transfer limitations.(3) Effects of hydrogeological and operational parameters on ASR efficiency are assessed in homogeneous/stratified, isotropic/anisotropic coastal aquifers. Effects of transverse dispersion are particularly investigated in such aquifers.(4) Finally, we test and study an innovative ASR scheme for improving the RE in brackish aquifers: injection through a fully-penetrated well and recovery through a partially-penetrated well.
2

Measurement and Characterization of Terahertz Radiation Propagating Through a Parallel Plate Waveguide

Wachsmuth, Matthew George 01 January 2011 (has links)
As the amount of study into the terahertz (THz) region of the electromagnetic spectrum steadily increases, the parallel plate waveguide has emerged as a simple and effective fixture to perform many experiments. The ability to concentrate THz radiation into a small area or volume enables us to analyze smaller samples and perform more repeatable measurements, which is essential for future research. While the fundamental physics of PPW transmission are understood mathematically, the practical knowledge of building such a fixture for the THz domain and taking measurements on it with a real system needs to be built up through experience. In this thesis, multiple PPW configurations are built and tested. These include waveguides of different lengths and opening heights, using lenses and antennas to focus and collect radiation from the input and output, and different amounts of polish on the waveguide surface. A basic resonator structure is also built and measured as a proof of concept for future research. The two most useful propagation modes through the waveguide, the lowest order transverse magnetic (TEM) and transverse electric (TE) modes, were characterized on all of the setups. Additionally, a flexible fixture was designed and measured which will allow future work in the THz field to be much more reliable and repeatable.
3

Autonomic Cloud Resource Management

Tunc, Cihan January 2015 (has links)
The power consumption of data centers and cloud systems has increased almost three times between 2007 and 2012. The traditional resource allocation methods are typically designed for high performance as the primary objective to support peak resource requirements. However, it is shown that server utilization is between 12% and 18%, while the power consumption is close to those at peak loads. Hence, there is a pressing need for devising sophisticated resource management approaches. State of the art dynamic resource management schemes typically rely on only a single resource such as core number, core speed, memory, disk, and network. There is a lack of fundamental research on methods addressing dynamic management of multiple resources and properties with the objective of allocating just enough resources for each workload to meet quality of service requirements while optimizing for power consumption. The main focus of this dissertation is to simultaneously manage power and performance for large cloud systems. The objective of this research is to develop a framework of performance and power management and investigate a general methodology for an integrated autonomic cloud management. In this dissertation, we developed an autonomic management framework based on a novel data structure, AppFlow, used for modeling current and near-term future cloud application behavior. We have developed the following capabilities for the performance and power management of the cloud computing systems: 1) online modeling and characterizing the cloud application behavior and resource requirements; 2) predicting the application behavior to proactively optimize its operations at runtime; 3) a holistic optimization methodology for performance and power using number of cores, CPU frequency, and memory amount; and 4) an autonomic cloud management to support the dynamic change in VM configurations at runtime to simultaneously optimize multiple objectives including performance, power, availability, etc. We validated our approach using RUBiS benchmark (emulating eBay), on an IBM HS22 blade server. Our experimental results showed that our approach can lead to a significant reduction in power consumption upto 87% when compared to the static resource allocation strategy, 72% when compared to adaptive frequency scaling strategy, and 66% when compared to a multi-resource management strategy.
4

Millimeter-Wave Pencil Beam Leaky-Wave Antenna

Eriksson, Tom, Westberg, Erik January 2021 (has links)
Moving into higher frequencies, in occurrence withmodern applications, poses the issue of higher attenuation ofelectromagnetic waves, which in turn demand more directiveantennas. This paper proposes a directive antenna designoperating at 30GHz based on leaky-wave technology. Themodel consists of two main components. Firstly, a corrugatedparallel plate waveguide serves the purpose of controlling thepropagation of electromagnetic waves, in particular the guidedwavelength. Secondly, an array of continuous transverse stubsare implemented in the parallel plate waveguide, which allowsfor radiation into free space and gives a directive beam due tothe array configuration. Dispersive properties of the waveguideare studied to select appropriate dimensions for the corrugationsand optimization of the transverse stub dimensions is performedby a unit cell parameter analysis. The proposed design producepencil beam radiation in the broadside direction with a gain of24:5 dBi and a 􀀀3dB relative bandwidth of 8:8% and anaperture efficiency of 79%. / Att gå upp i frekvens för att möta krav sattaav moderna tillämpningar för med sig problemet med högreattenuering av elektromagnetiska vågor. Detta sätter i sin turkrav på mer riktade antenner för att kompensera för förlusterna.I rapporten presenteras en riktad läckande-vågsantenn för30GHz. Modellen består av två huvudsakliga komponenter.Först en korrugerad parallellplåts-vågledare, vars syfte är attkontrollera hur vågen propagerar, särskilt med avseende påvåglängd. Sedan en serie med transversella öppningar som tillåterutstrålning, där seriens utformning ger upphov till en direktivstråle. Dimensioner bestäms genom dispersionsanalys av denkorrugerade vågledaren och optimering av den strålande enhetscellensker genom en parameterstudie. Den föreslagna modellenproducerar en riktad stråle med antennvinsten 24:5 dBi, relativabandbredden 8:8% och apertureffektiviteten 79%. / Kandidatexjobb i elektroteknik 2021, KTH, Stockholm
5

Continuous parallel plate waveguide lenses for future low-cost and high-performances multiple beams antennas / Lentilles continues en guide d’ondes à plans parallèles pour des applications multi-faisceaux à bas coût et à haute performance

Doucet, François 25 February 2019 (has links)
Les travaux présentés dans cette thèse portent sur l’étude et la conception de lentilles continues en guide d’ondes à plans parallèles (PPW) pour des applications multi-faisceaux. La conversion du front d'onde est assurée par une lentille formée d’une lame et d'une cavité transversale. Ce concept, proposant une approche mécanique simplifiée et possiblement purement métallique, est particulièrement attractif pour les futurs systèmes de communications par satellites (GEO/LEO) requérants des solutions à moindre coût tout en maintenant de hautes performances. La première partie de cette thèse présente la réalisation d’un outil d’analyse numérique basée sur l’optique géométrique (GO). Une prédiction rapide et précise des performances en rayonnement est obtenue. En combinant cet outil avec des processus d’optimisation, des performances en dépointage sur un large secteur angulaire sont ensuite démontrées, incluant une stabilité des diagrammes en rayonnement (ouverture à mi-puissance, niveaux de lobes secondaires et pertes en dépointage). Un prototype fonctionnant dans la bande Ka est réalisé, validant les performances précédemment obtenues. De hautes efficacités de rayonnement sont également mises en avant sur l’ensemble de la plage de fréquence. Enfin un second prototype plus compact basé sur de multiples lentilles est proposé et étudié, démontrant des performances similaires à la première solution fabriquée et mesurée. / The activities presented in this PhD focus on the study and development of continuous parallel plate waveguide (PPW) lenses for multiple beam applications. The wave front conversion is ensured by a PPW transversal ridge and cavity. The proposed concept, based on a simplified mechanical approach and possibly full-metal, is particularly suitable for future satellite communication systems (GO/LEO) requiring low-cost antennas while maintaining high performances. The first part of the thesis deals with the development of a numerical analysis tool based on geometrical optics (GO). A fast and accurate prediction of the radiation performance is provided.Combining the tool with optimization processes, large scanning performances have been demonstrated, including a stability of the radiation pattern performance (HPBW, SLL, scan loss). A prototype working at Ka band has been manufactured, validating the performances demonstrated previously. High radiation efficiencies are also proved over the entire frequency range. Finally, a second prototype targeting performances in compactness and based on multiple lenses is proposed and studied, showing similar performances as the first solution fabricated and measured.

Page generated in 0.0466 seconds