• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise de unidades de pré-purificação de ar por adsorção / Analysis of units of pre-air purification by adsorption

Natalia de Souza de Lacerda 28 February 2011 (has links)
Os principais constituintes do ar, nitrogênio, oxigênio e argônio, estão cada vez mais presentes nas indústrias, onde são empregados nos processos químicos, para o transporte de alimentos e processamento de resíduos. As duas principais tecnologias para a separação dos componentes do ar são a adsorção e a destilação criogênica. Entretanto, para ambos os processos é necessário que os contaminantes do ar, como o gás carbônico, o vapor dágua e hidrocarbonetos, sejam removidos para evitar problemas operacionais e de segurança. Desta forma, o presente trabalho trata do estudo do processo de pré-purificação de ar utilizando adsorção. Neste sistema a corrente de ar flui alternadamente entre dois leitos adsorvedores para produzir ar purificado continuamente. Mais especificamente, o foco da dissertação corresponde à investigação do comportamento de unidades de pré-purificação tipo PSA (pressure swing adsorption), onde a etapa de dessorção é realizada pela redução da pressão. A análise da unidade de pré-purificação parte da modelagem dos leitos de adsorção através de um sistema de equações diferenciais parciais de balanço de massa na corrente gasosa e no leito. Neste modelo, a relação de equilíbrio relativa à adsorção é descrita pela isoterma de Dubinin-Astakhov estendida para misturas multicomponentes. Para a simulação do modelo, as derivadas espaciais são discretizadas via diferenças finitas e o sistema de equações diferenciais ordinárias resultante é resolvido por um solver apropriado (método das linhas). Para a simulação da unidade em operação, este modelo é acoplado a um algoritmo de convergência relativo às quatro etapas do ciclo de operação: adsorção, despressurização, purga e dessorção. O algoritmo em questão deve garantir que as condições finais da última etapa são equivalentes às condições iniciais da primeira etapa (estado estacionário cíclico). Desta forma, a simulação foi implementada na forma de um código computacional baseado no ambiente de programação Scilab (Scilab 5.3.0, 2010), que é um programa de distribuição gratuita. Os algoritmos de simulação de cada etapa individual e do ciclo completo são finalmente utilizados para analisar o comportamento da unidade de pré-purificação, verificando como o seu desempenho é afetado por alterações nas variáveis de projeto ou operacionais. Por exemplo, foi investigado o sistema de carregamento do leito que mostrou que a configuração ideal do leito é de 50% de alumina seguido de 50% de zeólita. Variáveis do processo foram também analisadas, a pressão de adsorção, a vazão de alimentação e o tempo do ciclo de adsorção, mostrando que o aumento da vazão de alimentação leva a perda da especificação que pode ser retomada reduzindo-se o tempo do ciclo de adsorção. Mostrou-se também que uma pressão de adsorção maior leva a uma maior remoção de contaminantes. / The main constituents of air, nitrogen, oxygen and argon, are increasingly present in industries where they are employed in chemical processes, to transport food and waste processing. The two main technologies for the separation of air components are the adsorption and cryogenic distillation. However, for both processes is necessary to remove air contaminants, such as carbon dioxide, water vapor and hydrocarbons, to avoid operational problems and safety concerns. Thus, this work deals with the study of air pre-purification using adsorption. In this system the air current flows alternately between two adsorbing beds to produce clean air continuously. More specifically, the focus of the dissertation is to investigate the behavior of pre-purification units, PSA (pressure swing adsorption), where the desorption step is accomplished by reducing the pressure. The analysis of pre-purification unit begins with adsorption beds modeling through a partial differential equations system of mass balance in the gas stream and in the bed. In this model, the adsorption equilibrium is described by the Dubinin-Astakhov isotherm extended to multicomponent mixtures. For the simulation model, the spatial derivatives are discretized via finite differences and the ordinary differential equations system resultant is solved by an appropriate solver (method of lines). To the operating unit simulation, this model is coupled to a convergence algorithm on the four phases of the operation: adsorption, depressurization, purge and desorption. The algorithm in question must ensure that the final terms of the final stage are equivalent to the initial conditions of the first stage (cyclic steady state). Thus, the simulation was implemented in the form of a computational code based programming environment Scilab (Scilab 5.3.0, 2010), which is a program of free distribution. The simulation algorithms of each individual step and the complete cycle are finally used to analyze the behavior of pre-purification unit, checking how their performance is affected by changes in design variables or operational. For example, we have investigated the charging system of the bed and showed that the optimal configuration of the bed is 50% alumina followed by 50% of zeolite. Process variables were also examined, the adsorption pressure, the flow rate and cycle time of adsorption, showing that increasing the feed flow rate leads to a loss of specification that can be taken up by reducing the cycle time of adsorption. It was also shown that a higher pressure adsorption leads to a greater removal of contaminants.
2

Análise de unidades de pré-purificação de ar por adsorção / Analysis of units of pre-air purification by adsorption

Natalia de Souza de Lacerda 28 February 2011 (has links)
Os principais constituintes do ar, nitrogênio, oxigênio e argônio, estão cada vez mais presentes nas indústrias, onde são empregados nos processos químicos, para o transporte de alimentos e processamento de resíduos. As duas principais tecnologias para a separação dos componentes do ar são a adsorção e a destilação criogênica. Entretanto, para ambos os processos é necessário que os contaminantes do ar, como o gás carbônico, o vapor dágua e hidrocarbonetos, sejam removidos para evitar problemas operacionais e de segurança. Desta forma, o presente trabalho trata do estudo do processo de pré-purificação de ar utilizando adsorção. Neste sistema a corrente de ar flui alternadamente entre dois leitos adsorvedores para produzir ar purificado continuamente. Mais especificamente, o foco da dissertação corresponde à investigação do comportamento de unidades de pré-purificação tipo PSA (pressure swing adsorption), onde a etapa de dessorção é realizada pela redução da pressão. A análise da unidade de pré-purificação parte da modelagem dos leitos de adsorção através de um sistema de equações diferenciais parciais de balanço de massa na corrente gasosa e no leito. Neste modelo, a relação de equilíbrio relativa à adsorção é descrita pela isoterma de Dubinin-Astakhov estendida para misturas multicomponentes. Para a simulação do modelo, as derivadas espaciais são discretizadas via diferenças finitas e o sistema de equações diferenciais ordinárias resultante é resolvido por um solver apropriado (método das linhas). Para a simulação da unidade em operação, este modelo é acoplado a um algoritmo de convergência relativo às quatro etapas do ciclo de operação: adsorção, despressurização, purga e dessorção. O algoritmo em questão deve garantir que as condições finais da última etapa são equivalentes às condições iniciais da primeira etapa (estado estacionário cíclico). Desta forma, a simulação foi implementada na forma de um código computacional baseado no ambiente de programação Scilab (Scilab 5.3.0, 2010), que é um programa de distribuição gratuita. Os algoritmos de simulação de cada etapa individual e do ciclo completo são finalmente utilizados para analisar o comportamento da unidade de pré-purificação, verificando como o seu desempenho é afetado por alterações nas variáveis de projeto ou operacionais. Por exemplo, foi investigado o sistema de carregamento do leito que mostrou que a configuração ideal do leito é de 50% de alumina seguido de 50% de zeólita. Variáveis do processo foram também analisadas, a pressão de adsorção, a vazão de alimentação e o tempo do ciclo de adsorção, mostrando que o aumento da vazão de alimentação leva a perda da especificação que pode ser retomada reduzindo-se o tempo do ciclo de adsorção. Mostrou-se também que uma pressão de adsorção maior leva a uma maior remoção de contaminantes. / The main constituents of air, nitrogen, oxygen and argon, are increasingly present in industries where they are employed in chemical processes, to transport food and waste processing. The two main technologies for the separation of air components are the adsorption and cryogenic distillation. However, for both processes is necessary to remove air contaminants, such as carbon dioxide, water vapor and hydrocarbons, to avoid operational problems and safety concerns. Thus, this work deals with the study of air pre-purification using adsorption. In this system the air current flows alternately between two adsorbing beds to produce clean air continuously. More specifically, the focus of the dissertation is to investigate the behavior of pre-purification units, PSA (pressure swing adsorption), where the desorption step is accomplished by reducing the pressure. The analysis of pre-purification unit begins with adsorption beds modeling through a partial differential equations system of mass balance in the gas stream and in the bed. In this model, the adsorption equilibrium is described by the Dubinin-Astakhov isotherm extended to multicomponent mixtures. For the simulation model, the spatial derivatives are discretized via finite differences and the ordinary differential equations system resultant is solved by an appropriate solver (method of lines). To the operating unit simulation, this model is coupled to a convergence algorithm on the four phases of the operation: adsorption, depressurization, purge and desorption. The algorithm in question must ensure that the final terms of the final stage are equivalent to the initial conditions of the first stage (cyclic steady state). Thus, the simulation was implemented in the form of a computational code based programming environment Scilab (Scilab 5.3.0, 2010), which is a program of free distribution. The simulation algorithms of each individual step and the complete cycle are finally used to analyze the behavior of pre-purification unit, checking how their performance is affected by changes in design variables or operational. For example, we have investigated the charging system of the bed and showed that the optimal configuration of the bed is 50% alumina followed by 50% of zeolite. Process variables were also examined, the adsorption pressure, the flow rate and cycle time of adsorption, showing that increasing the feed flow rate leads to a loss of specification that can be taken up by reducing the cycle time of adsorption. It was also shown that a higher pressure adsorption leads to a greater removal of contaminants.

Page generated in 0.1027 seconds