• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 34
  • 11
  • 10
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Brownian Particles in Nonequilibrium Solvents

Müller, Boris 10 December 2019 (has links)
No description available.
32

Měření průtoku vzduchu pomocí víceotvorových rychlostních sond / Flow measurement of air by multiport averaging probes

Šimák, Jakub January 2011 (has links)
Master work deals with the measurement of fluid flow (particularly air) pipe, with orifice and multiport averaging probe. The theoretical part is followed by practical, which verifies the properties of the measured system. In a next part of semestral work are verifies the properties of multiport averaging probes Vavra s.r.o. MQS-011 and Rosemount Annubar 485. Measured values from probes are compared.
33

Numerical Studies of Natural Convection in Laterally Heated Vertical Cylindrical Reactors: Characteristic Length, Heat Transfer Correlation, and Flow Regimes Defined

Hirt, David Matthew 14 May 2022 (has links)
No description available.
34

A dislocation model of plasticity with particular application to fatigue crack closure

McKellar, Dougan Kelk January 2001 (has links)
The ability to predict fatigue crack growth rates is essential in safety critical systems. The discovery of fatigue crack closure in 1970 caused a flourish of research in attempts to simulate this behaviour, which crucially affects crack growth rates. Historically, crack tip plasticity models have been based on one-dimensional rays of plasticity emanating from the crack tip, either co-linear with the crack (for the case of plane stress), or at a chosen angle in the plane of analysis (for plane strain). In this thesis, one such model for plane stress, developed to predict fatigue crack closure, has been refined. It is applied to a study of the relationship between the apparent stress intensity range (easily calculated using linear elastic fracture mechanics), and the true stress intensity range, which includes the effects of plasticity induced fatigue crack closure. Results are presented for all load cases for a finite crack in an infinite plane, and a method is demonstrated which allows the calculation of the true stress intensity range for a growing crack, based only on the apparent stress intensity range for a static crack. Although the yield criterion is satisfied along the plastic ray, these one-dimensional plasticity models violate the yield criterion in the area immediately surrounding the plasticity ray. An area plasticity model is therefore required in order to model the plasticity more accurately. This thesis develops such a model by distributing dislocations over an area. Use of the model reveals that current methods for incremental plasticity algorithms using distributed dislocations produce an over-constrained system, due to misleading assumptions concerning the normality condition. A method is presented which allows the system an extra degree of freedom; this requires the introduction of a parameter, derived using the Prandtl-Reuss flow rule, which relates the magnitude of slip on complementary shear planes. The method is applied to two problems, confirming its validity.

Page generated in 0.0535 seconds