• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 6
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 75
  • 75
  • 64
  • 21
  • 20
  • 15
  • 14
  • 14
  • 13
  • 13
  • 11
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Role sestřihu pre-mRNA při rozvoji lidských dědičných onemocněních / The role of pre-mRNA splicing in human hereditary diseases

Malinová, Anna January 2017 (has links)
U5 small ribonucleoprotein particle (U5 snRNP) is a crucial component of the spliceosome, the complex responsible for pre-mRNA splicing. Despite the importance of U5 snRNP, not much is known about its biogenesis. When we depleted one of the core U5 components, protein PRPF8, the other U5-specific proteins do not associate with U5 snRNA and the incomplete U5 was accumulated in nuclear structures known as Cajal bodies. To further clarify the role of PRPF8 in U5 snRNP assembly, we studied PRPF8 mutations that cause an autosomal dominant retinal disorder, retinitis pigmentosa (RP). We prepared eight different PRPF8 variants carrying RP-associated mutations and expressed them stably in human cell culture. We showed that most mutations interfere with the assembly of snRNPs which consequently leads to reduced efficiency of splicing. The mutant PRPF8 together with EFTUD2 are stalled in the cytoplasm in a form of U5 snRNP assembly intermediate. Strikingly, we identified several chaperons including the HSP90/R2TP complex and ZNHIT2 as new PRPF8's interactors and potential U5 snRNP assembly factors. Our results further imply that these chaperons preferentially bind the unassembled U5 complexes and that HSP90 is required for stability of...
12

Molekulární mechanizmy kontroly kvality při skládání snRNP částic / Molecular mechanism of quality control during snRNP biogenesis

Klimešová, Klára January 2021 (has links)
The spliceosome is one of the largest and most dynamic molecular machines in the cell. The central part of the complex is formed by five small nuclear ribonucleoproteins (snRNPs) which are generated in a multi-step biogenesis pathway. Moreover, the snRNPs undergo extensive rearrangements during the splicing and require reassembly after every intron removal. Both de novo assembly and post-splicing recycling of snRNPs are guided and facilitated by specific chaperones. Here, I reveal molecular details of function of two snRNP chaperones, SART3 and TSSC4. While TSSC4 is a previously uncharacterized protein, SART3 has been described before as a U6 snRNP-specific factor which assists in association of U6 and U4 particles into di-snRNP, and is important for the U4/U6 snRNP recycling. However, the mechanism of its function has been unclear. Here, I provide an evidence that SART3 interacts with a post-splicing complex and propose that SART3 could promote its disassembly. Our data further suggest that SART3 binds U6 snRNP already within the post-splicing complex and thus participates in the whole recycling phase of U6 snRNP. Then, I show that TSSC4 is a novel U5 snRNP-specific chaperone which promotes an assembly of U5 and U4/U6 snRNPs into a splicing-competent tri-snRNP particle. We identified...
13

Vliv transkripčních regulačních elementů na sestřih pre-mRNA / Influence of transcription regulatory elemets on pre-mRNA splicing

Volek, Martin January 2018 (has links)
In the process of pre-mRNA splicing introns are removed from pre-mRNA and exons are joined together. Current studies show, that about 95 % of genes, which contain more than two exons, can undergo alternative splicing. In this process some exons are included in or excluded from the final mRNA. Majority of pre-mRNA splicing take place co- transcriptionaly at this time RNA polymerase II is still attached to pre-mRNA. Alternative splicing is complex process that takes place in a close proximity of DNA and histones that might modulate alternative splicing decisions. Futher studies have validated fibronectin gene (FN1) and his alternative exons EDA and EDB (extra domain A and B) as suitably model for studying alternative splicing. Study using FN1 minigene reporter system, which is composed from EDA exon and two surrounding introns and exons, has proved that insertion of transcription enhancer SV40 infront of promotor, the level of EDA inclusion is decreased. So far, has not been prooved if this mechanism can function in real genome context and if distal transcription elements can influence alternative splicing. In this study, we have predicted transcription enhancer for FN1 gene by using The Ensemble Regulatory Build and FANTOM 5. The predicted transcription enhancer, is located 23,5 kbp upstream of TSS...
14

Formování sestřihových snRNP v buněčném jádře / Formování sestřihových snRNP v buněčném jádře

Novotný, Ivan January 2011 (has links)
1 ABSTRACT There are many structures, suborganelles and bodies in the eukaryotic cell nucleus. These domains provide the nucleus with many specific functions. Nucleolus is specialized compartment serves to ribosomes assembly, nuclear speckles or Splicing Factors Compartment play an important role in RNA processing and best studied of them, Cajal bodies (CBs), are involved in snRNP maturation. However, non-membrane substructures are not unique for cell nucleus; processing bodies (P bodies) found in the cytoplasm are proposed to be important places in mRNA degradation pathway. This work is a compilation of four projects focused on non-membrane cellular bodies; namely, nuclear CBs and cytoplasmic P bodies. Both CBs and P bodies are dynamic structures that continuously exchange their components with surrounding environment. In addition to a widely accepted role of CBs in snRNP biogenesis, we show that the CB serves as a place where snRNPs are regenerated after each round of splicing. Thus, CBs are important nuclear compartment involved in snRNP recycling. To further characterize tri-snRNP assembly in CBs we applied kinetic experiments combined with mathematical modeling and created a kinetic model of tri- snRNP formation in the CB that determined kinetic parameters of tri-snRNP formation. Moreover, our kinetic...
15

Regulace pre-mRNA sestřihu v prostředí buněčného jádra / Regulace pre-mRNA sestřihu v prostředí buněčného jádra

Hnilicová, Jarmila January 2011 (has links)
Eukaryotic genes contain non-coding sequences - introns that are removed during pre-mRNA splicing by the spliceosome. The spliceosome is composed of five snRNPs (U1, U2, U4/U6 and U5) which assemble on pre-mRNA in a step-wise manner and together with additional non-snRNP proteins catalyse splicing. Mutations in splicing factors can cause severe diseases, for example a point missense mutation (called AD29) in hPrp31 (U4/U6 snRNP specific protein) induces retinitis pigmentosa, disease often leading to complete blindness. In this PhD thesis we show that the hPrp31 AD29 mutant is unstable and is not properly incorporated into spliceosomal snRNPs. In addition, the expression of the mutant protein reduces cell proliferation, which indicates that it interferes with cellular metabolism (likely splicing) and could explain the induction of retinitis pigmentosa. Next, we focus on a role of nuclear environment in pre-mRNA splicing. It was shown that new U4/U6·U5 snRNPs are preferentially assembled in non-membrane nuclear structure - Cajal body. Here we expand this finding and provide evidence that Cajal bodies are also important for U4/U6·U5 snRNP recycling after splicing. In addition, we analyzed a role of chromatin and particularly histone acetylation modulates in splicing regulation. Using inhibitor of...
16

Biochemical and structural characterization of spliceosomes purified at defined stages of assembly from the yeast S. cerevisiae

Dannenberg, Julia 08 April 2013 (has links)
No description available.
17

Regulation of alternative pre-mRNA splicing by depolarization/CaMKIV

Liu, Guodong 29 June 2012 (has links)
Alternative pre-mRNA splicing is often controlled by cell signals (1-3). Membrane depolarization/calcium (Ca2+) signaling controls alternative splicing of a group of genes in neurons and endocrine cells (4-9), with important implications in memory formation or secretion of hormones and neurotransmitters (10-15). However, the underlying molecular basis remains largely unknown. In rat GH3 pituitary cells, BK potassium channels control cellular electrical firing, which is critical for the release of growth hormone and prolactin. Inclusion of the STREX exon of the Slo1 gene encoding the channel α subunit is repressed by the Ca2+/calmodulin-dependent kinase IV (CaMKIV) upon depolarization (4). We isolated CaMKIV-responsive RNA elements (CaRREs) from a library of 13-nucleotide random sequences through in vivo selection in HEK293T cells. Most elements are CA-rich or A-rich, with the heterogeneous nuclear ribonucleoprotein (hnRNP) L as a binding factor. This is consistent with the finding that CA-rich elements and hnRNP L are targeted by CaMKIV in the regulation of splicing (16). In further efforts to directly link the kinase with hnRNP L, we showed that hnRNP L is essential for the full repression of STREX by depolarization and that a highly conserved CaMKIV target serine (Ser513) of L is required. Ser513 phosphorylation enhanced L binding to the STREX CaRRE1, leading to reduced binding of the constitutive factor U2AF65 to the 3’ splice site of STREX. Mutation of Ser513 abolished both activities. Therefore, hnRNP L mediates the repression of STREX by depolarization through modulation of a key step in spliceosomal assembly. We further identified hnRNP L, L-like (LL) and PTB as repressors of STREX and other depolarization-regulated exons with differential effects. Moreover, a full response of STREX to depolarization is mediated by combinations of hnRNP L and LL or PTB. Another depolarization-responsive exon, the exon 18 of the neuregulin 1 gene, is also controlled in a similar way, with the hnRNP L Ser513 required as well. This work provides the first direct link between the Ca2+ signaling and a specific serine of a regulatory splicing factor. Elucidation of the underlying molecular mechanisms would likely help us understand the fine-tuning of hormone secretion and memory formation.
18

THE CONTRIBUTION OF TWO RELATED BBP-BINDING GYF PROTEINS, SMY2 AND SYH1, TO CELLULAR RNA ABUNDANCE AND GENOME STABILITY

Chen, Min 01 January 2013 (has links)
Nuclear precursor of mature messenger RNA (pre-mRNA) splicing is one of the most highly regulated processes in eukaryotic organisms. In addition to its role in the removal of constitutive or alternative introns present in the pre-mRNA, splicing is also highly integrated into other layers of gene expression. This study investigates the potential role of the nuclear branchpoint binding protein (BBP) outside of the pre-mRNA splicing cycle. More specifically, we were interested in the biological relevance of its association with two cytoplasmic proteins Smy2 and Syh1. Smy2 and Syh1 belong to the GYF family of poly-proline binding proteins, and their roles in cell biology have not been well elucidated. Here we report that Smy2 and Syh1 act redundantly in: (i) limiting pre-mRNA accumulation when yeast cultures reach high cell density, potentially through promoting pre-mRNA decay in the cytoplasm; (ii) restricting Ty1 retrotransposition, apparently by limiting the Ty1 transcript abundance; (iii) limiting the accumulation of BBP-associated yet intronless TDA1 mRNA. With the presence of UACUAAC motif and BBP association as common features of these Smy2/Syh1 sensitive substrates, we tested if BBP interaction is required for Smy2/Syh1 function in RNA metabolism. Interestingly, we found that deletion of BBP C-terminal region (bbp∆C), which largely reduces or abolishes its association with Smy2, does not lead to similar phenotypes as observed in smy2∆ syh1∆ deletion mutant cells. In addition, mutagenesis of the TACTAAC BBP-binding site within the TDA1 coding region does not seem to affect TDA1 mRNA abundance or its sensitivity to the smy2∆ syh1∆ deletions. Therefore, we concluded that while the two BBP-binding proteins Smy2 and Syh1 impact the levels of certain cellular RNAs, this phenomenon is not strictly dependent upon BBP-Smy2 interaction and may be independent of BBP contribution. A model is proposed for Smy2 and Syh1 function in RNA metabolism based on our observations and interactions between these proteins with other factors implicated in RNA stability or translation.
19

Regulation of alternative pre-mRNA splicing by depolarization/CaMKIV

Liu, Guodong 29 June 2012 (has links)
Alternative pre-mRNA splicing is often controlled by cell signals (1-3). Membrane depolarization/calcium (Ca2+) signaling controls alternative splicing of a group of genes in neurons and endocrine cells (4-9), with important implications in memory formation or secretion of hormones and neurotransmitters (10-15). However, the underlying molecular basis remains largely unknown. In rat GH3 pituitary cells, BK potassium channels control cellular electrical firing, which is critical for the release of growth hormone and prolactin. Inclusion of the STREX exon of the Slo1 gene encoding the channel α subunit is repressed by the Ca2+/calmodulin-dependent kinase IV (CaMKIV) upon depolarization (4). We isolated CaMKIV-responsive RNA elements (CaRREs) from a library of 13-nucleotide random sequences through in vivo selection in HEK293T cells. Most elements are CA-rich or A-rich, with the heterogeneous nuclear ribonucleoprotein (hnRNP) L as a binding factor. This is consistent with the finding that CA-rich elements and hnRNP L are targeted by CaMKIV in the regulation of splicing (16). In further efforts to directly link the kinase with hnRNP L, we showed that hnRNP L is essential for the full repression of STREX by depolarization and that a highly conserved CaMKIV target serine (Ser513) of L is required. Ser513 phosphorylation enhanced L binding to the STREX CaRRE1, leading to reduced binding of the constitutive factor U2AF65 to the 3’ splice site of STREX. Mutation of Ser513 abolished both activities. Therefore, hnRNP L mediates the repression of STREX by depolarization through modulation of a key step in spliceosomal assembly. We further identified hnRNP L, L-like (LL) and PTB as repressors of STREX and other depolarization-regulated exons with differential effects. Moreover, a full response of STREX to depolarization is mediated by combinations of hnRNP L and LL or PTB. Another depolarization-responsive exon, the exon 18 of the neuregulin 1 gene, is also controlled in a similar way, with the hnRNP L Ser513 required as well. This work provides the first direct link between the Ca2+ signaling and a specific serine of a regulatory splicing factor. Elucidation of the underlying molecular mechanisms would likely help us understand the fine-tuning of hormone secretion and memory formation.
20

Auto-Regulation of the MBNL1 Pre-mRNA

Gates, Devika P., 1984- 06 1900 (has links)
xiv, 59 p. : ill. (some col.) / Muscleblind-like 1 (MBNL1) is a splicing factor whose improper cellular localization is a central component of myotonic dystrophy (DM). In DM, the lack of properly localized MBNL1 leads to mis-splicing of many pre-mRNAs. The mechanism by which MBNL1 regulates it pre-mRNA targets is not well understood. In order to determine the mechanism by which MBNL1 regulates alternative splicing, a consensus RNA binding motif for Mbl (the <italic>Drosophila</italic> ortholog of MBNL1) and MBNL1 were determined using SELEX (Systematic Evolution of Ligands by Exponential Enrichment). These consensus motifs allowed for the identification of high affinity endogenous sites within pre-mRNAs that are regulated by MBNL1. <italic>In vitro</italic> binding studies showed that MBNL1 bound to RNAs that contained the consensus motif surrounded by pyrimidines. Some of these sites were identified upstream of exon 5 within the <italic>MBNL1</italic> pre-mRNA, and we have shown that MBNL1 auto-regulates the exclusion of exon 5 in HeLa cells. The region of the <italic>MBNL1</italic> gene that includes exon 5 and flanking intronic sequence is highly conserved in vertebrate genomes. The 3' end of intron 4 is non-canonical in that it contains an AAG 3' splice site and a predicted branchpoint that is 141 nucleotides from the 3' splice site. Using a mini-gene that includes exon 4, intron 4, exon 5, intron 5 and exon 6 of <italic>MBNL1</italic>, we show that MBNL1 regulates inclusion of exon 5. Mapping of the intron 4 branchpoint confirms that branching occurs primarily at the predicted distant branchpoint. Structure probing and footprinting reveal that the highly conserved region between the branchpoint and the 3' splice site is primarily unstructured, and MBNL1 binds within this region of the pre-mRNA, which we have termed the MBNL1 response element. Deletion of the response element eliminates MBNL1 splicing regulation and leads to complete inclusion of exon 5, which is consistent with the suppressive effect of MBNL1 on splicing. This dissertation includes previously published co-authored material as well as my recent co-authored material that has been submitted for publication. / Committee in charge: Kenneth Prehoda, Chair; J. Andrew Berglund, Advisor; Victoria J. de Rose, Member; Alice Barkan, Member; Karen Guillemin, Outside Member

Page generated in 0.0208 seconds