• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Understanding C/EBPbeta LAP/LIP Transcriptional and Adipogenic Potential Through Regulation by HDAC1 and GCN5

Salem Abdou, Houssein 17 May 2011 (has links)
The CCAAT/Enhancer Binding Protein Beta (C/EBPβ) is part of the leucine zipper family of transcription factors and is involved in a myriad of processes including cellular proliferation and differentiation. C/EBPβ is expressed as three isoforms (LAP*, LAP, LIP), translated from a single mRNA by a leaky ribosomal scanning mechanism. While LAP* and LAP have activating functions, LIP is recognized as being a repressor of transcription due to its lack of activation domains. Numerous studies have shown that C/EBPβ acetylation state modulates its activity in a promoter-specific manner. For instance, the acetyltransferases GCN5/PCAF and the deacetylase complex mSin3A/HDAC1 regulate C/EBPβ activity on the C/EBPa promoter. GCN5/PCAF-mediated acetylation of C/EBPβ was shown to positively affect its transcriptional activity in a steroid-dependent mechanism via the glucocorticoid receptor (GR). GR relieves HDAC1 association from C/EBPβ by targeting the deacetylase for proteasomal degradation, hence favouring GCN5-mediated acetylation of C/EBPβ and allowing maximum activation capacity to be reached. In order to further elucidate C/EBPβ activation, I sought to characterize the interplay between GCN5 and HDAC1 in regulating C/EBPβ LAP/LIP activity during murine adipogenesis by identifying their binding domain in C/EBPβ. I identified a minimal domain located within regulatory domain 1 (RD1) of C/EBPβ that is required for both GCN5 and HDAC1 binding. Furthermore, the loss of the identified domain in C/EBPβ appears to partially mimic the GR effect, thus giving C/EBPβ a higher basal transcriptional activity that accelerates NIH 3T3 and 3T3 L1 adipogenesis. Moreover, I also showed that the LIP isoform inhibitory mode of action is partially mediated through the mSin3A/HDAC1 repressor complex, which gives LIP an active repressor function. In addition to LIP inhibitory function, I also showed that a cysteine residue located in LAP* negatively regulates its transactivating function during murine adipogenesis. Although RD1 of C/EBPβ has been suggested to act as a negative regulatory domain, I showed that only five residues are responsible for most of its inhibitory effect. Hence, in an attempt to further define sub-domains within RD1, I characterized a new positive regulatory domain at its N-terminal region, which seems to be required for C/EBPβ activity in a promoter-specific manner. In conclusion, this study not only supports previously hypothesized mechanisms by which C/EBPβ is regulated, but it also redefines the contribution of LAP*, LAP and LIP in regulating transcription. Most importantly, the results emphasize the countless possibilities by which C/EBPβ transactivation potential could be modulated during cellular differentiation.
2

Understanding C/EBPbeta LAP/LIP Transcriptional and Adipogenic Potential Through Regulation by HDAC1 and GCN5

Salem Abdou, Houssein 17 May 2011 (has links)
The CCAAT/Enhancer Binding Protein Beta (C/EBPβ) is part of the leucine zipper family of transcription factors and is involved in a myriad of processes including cellular proliferation and differentiation. C/EBPβ is expressed as three isoforms (LAP*, LAP, LIP), translated from a single mRNA by a leaky ribosomal scanning mechanism. While LAP* and LAP have activating functions, LIP is recognized as being a repressor of transcription due to its lack of activation domains. Numerous studies have shown that C/EBPβ acetylation state modulates its activity in a promoter-specific manner. For instance, the acetyltransferases GCN5/PCAF and the deacetylase complex mSin3A/HDAC1 regulate C/EBPβ activity on the C/EBPa promoter. GCN5/PCAF-mediated acetylation of C/EBPβ was shown to positively affect its transcriptional activity in a steroid-dependent mechanism via the glucocorticoid receptor (GR). GR relieves HDAC1 association from C/EBPβ by targeting the deacetylase for proteasomal degradation, hence favouring GCN5-mediated acetylation of C/EBPβ and allowing maximum activation capacity to be reached. In order to further elucidate C/EBPβ activation, I sought to characterize the interplay between GCN5 and HDAC1 in regulating C/EBPβ LAP/LIP activity during murine adipogenesis by identifying their binding domain in C/EBPβ. I identified a minimal domain located within regulatory domain 1 (RD1) of C/EBPβ that is required for both GCN5 and HDAC1 binding. Furthermore, the loss of the identified domain in C/EBPβ appears to partially mimic the GR effect, thus giving C/EBPβ a higher basal transcriptional activity that accelerates NIH 3T3 and 3T3 L1 adipogenesis. Moreover, I also showed that the LIP isoform inhibitory mode of action is partially mediated through the mSin3A/HDAC1 repressor complex, which gives LIP an active repressor function. In addition to LIP inhibitory function, I also showed that a cysteine residue located in LAP* negatively regulates its transactivating function during murine adipogenesis. Although RD1 of C/EBPβ has been suggested to act as a negative regulatory domain, I showed that only five residues are responsible for most of its inhibitory effect. Hence, in an attempt to further define sub-domains within RD1, I characterized a new positive regulatory domain at its N-terminal region, which seems to be required for C/EBPβ activity in a promoter-specific manner. In conclusion, this study not only supports previously hypothesized mechanisms by which C/EBPβ is regulated, but it also redefines the contribution of LAP*, LAP and LIP in regulating transcription. Most importantly, the results emphasize the countless possibilities by which C/EBPβ transactivation potential could be modulated during cellular differentiation.
3

Understanding C/EBPbeta LAP/LIP Transcriptional and Adipogenic Potential Through Regulation by HDAC1 and GCN5

Salem Abdou, Houssein 17 May 2011 (has links)
The CCAAT/Enhancer Binding Protein Beta (C/EBPβ) is part of the leucine zipper family of transcription factors and is involved in a myriad of processes including cellular proliferation and differentiation. C/EBPβ is expressed as three isoforms (LAP*, LAP, LIP), translated from a single mRNA by a leaky ribosomal scanning mechanism. While LAP* and LAP have activating functions, LIP is recognized as being a repressor of transcription due to its lack of activation domains. Numerous studies have shown that C/EBPβ acetylation state modulates its activity in a promoter-specific manner. For instance, the acetyltransferases GCN5/PCAF and the deacetylase complex mSin3A/HDAC1 regulate C/EBPβ activity on the C/EBPa promoter. GCN5/PCAF-mediated acetylation of C/EBPβ was shown to positively affect its transcriptional activity in a steroid-dependent mechanism via the glucocorticoid receptor (GR). GR relieves HDAC1 association from C/EBPβ by targeting the deacetylase for proteasomal degradation, hence favouring GCN5-mediated acetylation of C/EBPβ and allowing maximum activation capacity to be reached. In order to further elucidate C/EBPβ activation, I sought to characterize the interplay between GCN5 and HDAC1 in regulating C/EBPβ LAP/LIP activity during murine adipogenesis by identifying their binding domain in C/EBPβ. I identified a minimal domain located within regulatory domain 1 (RD1) of C/EBPβ that is required for both GCN5 and HDAC1 binding. Furthermore, the loss of the identified domain in C/EBPβ appears to partially mimic the GR effect, thus giving C/EBPβ a higher basal transcriptional activity that accelerates NIH 3T3 and 3T3 L1 adipogenesis. Moreover, I also showed that the LIP isoform inhibitory mode of action is partially mediated through the mSin3A/HDAC1 repressor complex, which gives LIP an active repressor function. In addition to LIP inhibitory function, I also showed that a cysteine residue located in LAP* negatively regulates its transactivating function during murine adipogenesis. Although RD1 of C/EBPβ has been suggested to act as a negative regulatory domain, I showed that only five residues are responsible for most of its inhibitory effect. Hence, in an attempt to further define sub-domains within RD1, I characterized a new positive regulatory domain at its N-terminal region, which seems to be required for C/EBPβ activity in a promoter-specific manner. In conclusion, this study not only supports previously hypothesized mechanisms by which C/EBPβ is regulated, but it also redefines the contribution of LAP*, LAP and LIP in regulating transcription. Most importantly, the results emphasize the countless possibilities by which C/EBPβ transactivation potential could be modulated during cellular differentiation.
4

Understanding C/EBPbeta LAP/LIP Transcriptional and Adipogenic Potential Through Regulation by HDAC1 and GCN5

Salem Abdou, Houssein January 2011 (has links)
The CCAAT/Enhancer Binding Protein Beta (C/EBPβ) is part of the leucine zipper family of transcription factors and is involved in a myriad of processes including cellular proliferation and differentiation. C/EBPβ is expressed as three isoforms (LAP*, LAP, LIP), translated from a single mRNA by a leaky ribosomal scanning mechanism. While LAP* and LAP have activating functions, LIP is recognized as being a repressor of transcription due to its lack of activation domains. Numerous studies have shown that C/EBPβ acetylation state modulates its activity in a promoter-specific manner. For instance, the acetyltransferases GCN5/PCAF and the deacetylase complex mSin3A/HDAC1 regulate C/EBPβ activity on the C/EBPa promoter. GCN5/PCAF-mediated acetylation of C/EBPβ was shown to positively affect its transcriptional activity in a steroid-dependent mechanism via the glucocorticoid receptor (GR). GR relieves HDAC1 association from C/EBPβ by targeting the deacetylase for proteasomal degradation, hence favouring GCN5-mediated acetylation of C/EBPβ and allowing maximum activation capacity to be reached. In order to further elucidate C/EBPβ activation, I sought to characterize the interplay between GCN5 and HDAC1 in regulating C/EBPβ LAP/LIP activity during murine adipogenesis by identifying their binding domain in C/EBPβ. I identified a minimal domain located within regulatory domain 1 (RD1) of C/EBPβ that is required for both GCN5 and HDAC1 binding. Furthermore, the loss of the identified domain in C/EBPβ appears to partially mimic the GR effect, thus giving C/EBPβ a higher basal transcriptional activity that accelerates NIH 3T3 and 3T3 L1 adipogenesis. Moreover, I also showed that the LIP isoform inhibitory mode of action is partially mediated through the mSin3A/HDAC1 repressor complex, which gives LIP an active repressor function. In addition to LIP inhibitory function, I also showed that a cysteine residue located in LAP* negatively regulates its transactivating function during murine adipogenesis. Although RD1 of C/EBPβ has been suggested to act as a negative regulatory domain, I showed that only five residues are responsible for most of its inhibitory effect. Hence, in an attempt to further define sub-domains within RD1, I characterized a new positive regulatory domain at its N-terminal region, which seems to be required for C/EBPβ activity in a promoter-specific manner. In conclusion, this study not only supports previously hypothesized mechanisms by which C/EBPβ is regulated, but it also redefines the contribution of LAP*, LAP and LIP in regulating transcription. Most importantly, the results emphasize the countless possibilities by which C/EBPβ transactivation potential could be modulated during cellular differentiation.

Page generated in 0.1428 seconds