• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 40
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 129
  • 89
  • 67
  • 22
  • 17
  • 16
  • 15
  • 14
  • 14
  • 13
  • 13
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Serpentinization and metamorphism in the proterozoic Cape Smith foldbelt, New Quebec

Ozoray, Judit. January 1982 (has links)
No description available.
72

Greenschist-amphibolite metabasites at the northern margin of the Cape Smith foldbelt, Ungava, Québec

Olson, Karin Elizabeth. January 1983 (has links)
No description available.
73

The structural, metamorphic and tectonic context of selected sub-economic veining in the Natal thrust front and Natal Nappe zone, Northern KwaZulu-Natal.

Basson, Ian James. January 2000 (has links)
The eastern portion of the Namaqua-Natal Mobile Belt, the Natal Metamorphic Province is divided into four main tectonostratigraphic units. These units comprise two accreted island arcs: the Mzumbe and Margate Terranes; an imbricately thrust nappe zone consisting of four ophiolitic nappes in a hinterland-dipping duplex; and the highly deformed metavolcaniclastic/metagreywacke Mfongosi Group directly adjacent to the stable northern foreland of the Kaapvaal Craton. Theories of late-tectonic left-lateral movement in the southern island arcs are extrapolated northwards of the southern margin of the Kaapvaal Craton coincident with the Lilani-Matigulu Shear Zone. The relative timing and structural context of vein-hosted mineralization with respect to major recognized tectonic events is resolved in five separate areas, two in the Natal Nappe Zone and three in the Natal Thrust Front. The Madidima Nappe of the Natal Nappe Zone contains several north-northeast- to northeast-trending and northeast- to east-northeast trending quartzofeldspathic veined reefs considered to have formed in a late-tectonic left-lateral shear system (main shear and synthetic shear orientations, respectively). The northeast- to east-northeast-trending reef is duplicated due to infilling of normally-faulted steep structures in the semi-brittle, incremental normal faulting of the banded amphibolite component of the nappe. Later left-lateral movement has reactivated one of these steep structures along the southern margin of a regional F2-folded band of granite-gneiss in that a southwest extension of this structure may be responsible for sub-economic veining for a length of up to 9 km. The extensive flat-lying topography of the Mbongolwane Flats area, in which the reefs are situated, is accounted for by the accelerated weathering of rocks which underwent sustained late-tectonic metamorphism in the epidoteactinolite facies, accompanied by pervasive shearing and block rotation to the south of the southern limb of the regional F2 fold in the granite-gneiss. A large, kilometer-scale, open advective fluid system which provided fluid-mediated exchange between co-existing rocks existed at the time of vein formation. The fluid system was driven by early-tectonic intrusion of a granite gneiss and amphibole-rich granite. Two areas in the Mfongosi River valley, the northern and southern Mfongosi Valley areas, contain typical evidence of deformation at the leading edge of collision in a mobile belt. The southern Mfongosi Valley area, at the confluence of the Mfongosi and Tugela Rivers, contains veining which resulted from pressure solution of the host metavolcaniclastic/metagreywacke. Veining occupies predictable shear and tension fractures formed during the initial deformation of a foreland margin sequence, in addition to occupying those fractures formed by buckling on the layer-scale. The structural context of the northern Mfongosi Valley veining is defined by subsequent deformation and vein fragmentation such that the metavolcaniclastic/metagreywacke was reduced to a melange in which vein segments acted as competent clasts; a large-scale porphyroblast/matrix system. Formation of the Manyane Thrust to the south of the Mfongosi Group interrupted the normal retrograde metamorphism of the remainder of the Tugela Nappe and initiated a "hot iron effect" whereby a short-lived thermal pulse acted at the thrust plane, producing a reversed geothermal gradient in the underlying Mfongosi group. This reversed gradient would have been counteracted by a steepened normal geothermal gradient in the Mfongosi Group caused by overloading of the Natal Thrust Front by the Natal Nappe Zone. These geothermal gradients partly account for the concentration of veining in the areas of the Mfongosi Group which are directly adjacent to the Manyane Thrust, and directly adjacent to the Kaapvaal Craton, in the lower portions of the thrust front Stable isotope studies indicate fractionation between vein and wall rock under a short-lived, mainly rock-buffered, layer-scale fluid-movement system. Also forming part of the Mfongosi Group of the Natal Thrust Front, the Ngubevu area contains an apparently enigmatic distribution of veining accompanied by gold and base metal mineralization. The structural evolution of the Ngubevu area occurred during consistent left-lateral transpression into which has intruded early-tectonic veins, formed by pressure solution and having the same structural format as the early-tectonic veining in the southern Mfongosi Valley area. Subsequent deformation of the system was accompanied by 1900 -trending tension gashes which were continually ptygmatically-folded, sheared and offset to form occasionally mineralized quartzofeldspathic "blows" and along-strike stringers in the epidote- actinolite schist. Where veining cross-cuts narrow calcite - graphite - sericite - quartz - albite - tourmaline ± chlorite schist layers, gold mineralization occurred. The late-tectonic tension gashes, antitaxially filled by quartz and amorphous calcite, cross-cut the entire range of lithologies. The fluid system during vein deposition varied: during infilling of early-tectonic fractures a short-lived fluid-flow system dominated, with the emplacement of re crystallized wallrock occurring in a closed, non-advective regime under the influence of diffusion caused by pressure solution. The fluid system changed to a more open, advective, greater than layer-scale rock-buffered one with a decreasing contribution of material from immediate host rocks. An internal fluid source is implied for the entire period of vein emplacement, derived from structural analyses which indicates negative dilation across the Mfongosi Group in this area and by comparison of vein:wallrock δ180 values which indicate a lack of igneous-derived fluids. The Phoenix Mine, in the central portion of the Tugela Nappe, and the Ayres Reef, hosted in Manyane amphibolite adjacent to the Manyane Thrust, are grouped together on the basis of their cross-cutting nature and timing with respect to metamorphism and deformation of the host rock, and also due to their similarity in isotopic plots. Both vein sets occur in approximately east-west to east-northeast-trending zones which show evidence of late-tectonic left-lateral movement. Phoenix Mine veining occurs in weakly-metamorphosed meta-gabbro/meta-norite of the Tugela Rand Complex. The Manyane amphibolite demonstrates the amphibolite facies of metamorphism due to the short-lived thermal pulse at the Manyane Thrust. Both sets of veining display slickenlines which are indicative of their emplacement prior to the late-tectonic left-lateral movement. The unusually thick quartz veins of both deposits are the results of late- to post-Tugela Rand Complex fluids or the tapping of late-tectonic metamorphic fluid reservoirs. This caused silica metasomatism and redeposition of material in post-thrusting collapse features. A highly channelized, single-pass fluid system is proposed in the absence of intrusion-derived fluids. Whole rock geochemical data allow a distinction to be made between the Natal Thrust Front and the Natal Nappe Zone: the Foremost nappe of the nappe zone consists primarily of N-type mid-ocean ridge basalts/ocean-floor to within-plate basalts which were intruded prior to nappe emplacement by metaluminous orogenic volcanic arc granitiods. The thrust front displays a lateral variation in metabasite/metasediment ratio, with the ratio increasing from east to west in this inlier. In the east, in the Nkandlha area, melanged metagreywackes dominate and there is a marked paucity of associated metabasites. In the central portions of the thrust front, in the vicinity of the Mfongosi area, active continental margin/continental arc magmatogenic greywackes and arkoses are interlayered with calk-alkaline volcanic arc basalts (volcaniclastics). The greywacke geochemistry indicates little to no mafic/ultramafic influences in sediment contribution and the source of sediment is inferred to be the southern portions of the Kaapvaal Craton. The Nkandlha and Mfongosi area Mfongosi Group segments are considered to be in-situ or para-autochthonous. The western-most Ngubevu area predominantly hosts metabasites. The geochemistry of the metabasites indicates that they are N-type mid-ocean ridge basalts/ocean floor basalts from a destructive plate margin setting. The metabasites are interbanded with metapelitic/metacalcsilicate layers produced in a shallow water oxic environment, here inferred as a spatially-restricted shallow, marginal basin. The metabasites in the Ngubevu area are notably similar to those of the Madidima Nappe, indicating a similar provenance and pre-collisional mode of formation. It is proposed that the variation in the Natal Thrust Front was due to a north-east/south-west distribution of lithological proportions or mixing, with greywackes dominating in the northeast (in proximity to the Kaapvaal Craton) and metabasites dominating in the southwest. Left-lateral transpressional movement within the Mfongosi Group of the Natal Thrust Front, and the Natal Nappe Zone, was continuous throughout plate collision and obduction. / Thesis (Ph.D.)-University of Natal, Durban, 2000.
74

The geology and structure of the Bushveld Complex metamorphic aureole in the Olifants River area.

Uken, Ronald. January 1998 (has links)
The contact metamorphic aureole of the Rustenburg Layered Suite of the Bushveld Complex extends to a depth of over 5 km into the underlying mainly argillaceous Pretoria Group. When compared to other parts of the metamorphic aureole, the Olifants River area is unique in that it is characterised by a high degree of syn-Bushveld Complex deformation and very coarse grained pelitic assemblages. This is believed to have resulted from a combination of greater magma thickness, a deeper emplacement depth and a high degree of subsidence related deformation that was focused along the Thabazimbi-Murchison Lineament. This area also contains a laterally extensive and deformed quartz-feldspar porphyry sill, the Roodekrans Complex that is shown to represent a hypabyssal equivalent of the volcanic Rooiberg Group. There are three main metamorphic zones. A wide andalusite zone dominated by staurolite, garnet and cordierite assemblages. This is followed by a narrow fibrolite zone without staurolite, and a wide inner aureole of migmatite. The migmatite zone is characterised by garnet-cordierite-aluminosilicate assemblages with corundum, spinel and orthopyroxene assemblages at the highest grades. Metamorphic pressure and temperature estimates indicate pressures of between 3 kb and 4 kb in the lower part of the andalusite zone at temperatures of approximately 550°C. Porphyroblast-matrix relationships reveal a close link between deformation and metamorphism resulting in a spectrum of textural relationships developed as a result of inhomogeneous strain. Porphyroblasts in low strain domains preserve textures of “static type" growth whereas syntectonic textures are found in foliated rocks. Pre-tectonic porphyroblasts in many foliated domains indicate that deformation outlasted porphyroblast growth and increased in intensity and extent with time. Retrograde porphyroblasts are post-tectonic. Evidence is presented for both rotation and non-rotation of porphyroblasts in relation to geographical coordinates during extensional top-to-south, down-dip shear in the floor. The unique structural setting in this area triggered the growth of large diapiric structures in the floor of the Rustenburg Layered Suite that are preserved as periclinal folds on the margin and within the northeastern Bushveld Complex. Extreme gravitational loading and heating of the floor by a thickness of up to 8 km of mafic magma resulted in the generation of evenly spaced, up to 7 km diameter wall-rock diapirs that penetrated the overlying magma chamber. Diapiric deformation is restricted to rocks above a decollement zone that is developed along competency contrasts and corresponds approximately with the 550 °C peak metamorphic isotherm. Strongly lineated, boudinaged and foliated rocks are developed in the interpericlinal domains between adjacent periclines. Migmatites in these domains are characterised by conjugate extensional ductile shears and associated asymmetrical boudinage suggesting bulk deformation by pure shear processes. The extension lineation was produced by lateral extension along flow lines directed toward dome culminations. Each of the four diapiric periclines is cut by a different erosional section enabling reconstruction of a typical diapir geometry. At the highest structural levels, periclines have bulbous shapes with overturned limb geometries forming overhangs. The surrounding layered igneous rocks are locally deformed into a series of outward verging folds that define a broad rim syncline. Deformation within the pericline cores is represented by constrictional deformation that produced radial curtain-type folds with steeply plunging lineations and concentrically orientated folds in the outer shell. Diapirism is closely linked to magma emplacement mechanisms. Floor folds in the country rocks were initiated in the interfinger areas of a fingered intrusion. With further magma additions and the coalescence of intrusion fingers into a single sheet, interfinger folds matured into large diapiric periclines which rose to the upper levels of the magma chamber. Strain rates estimated from strain analyses, pericline geometry and model cooling calculations are in the order of 10-14 S-1, corresponding to diapiric uplift rates of 0.6 cm/yr. Diapirism is broadly compatible with a N-S extension in the Olifants River area during emplacement of the Rustenburg Layered Suite. On a regional scale, this is indicated by existence of a major EW dyke swarm that coincides with the long axis of the Bushveld Complex. The accommodation of the Bushveld Complex into the Kaapvaal Craton was facilitated by a combination of craton-wide extension that accompanied plume related magmatic underplating, and loading of the Bushveld Complex. Isostatic adjustment in response to Bushveld Complex subsidence resulted in further development of large basement domes around the perimeter of the Bushveld Complex. / Thesis (Ph.D.)-University of Natal, Durban, 1998.
75

Zinc-lead mineralization at Pering Mine in the Griqualand West sub-basin : an isotopic study.

Turner, Audrey Michelle. January 1992 (has links)
Detailed studies, both chemical and physical, have been performed on various dolomites and vug-filling carbonates, to determine the pathways and extent of the mineralizing fluids associated with the Pering Zn-Pb deposit within the Griqualand West sub-basin. Three carbonate phases were identified within the vugs using cathodoluminescence microscopy. The first phase formed a reaction rim on the host dolomites during the deposition of sphalerite and oscillatory zoned carbonate. Finally calcite was deposited, which is associated with post-mineralizing fluids. The vug-filling carbonates have very radiogenic 87Sr/86Sr values (0.72-0.76) compared with the host dolomites (0.70-0.73). The gangue carbonate minerals deposited within the vugs have similar radiogenic 87Sr/86Sr values to the gangue minerals of the main Pering orebody, indicating that the vugs formed part of the aquifer system through which the mineralizing fluids migrated. Radiogenic 87Sr was not acquired from the surrounding host dolomite. The mineralizing fluids may have picked up radiogenic 87Sr when migrating through porous rocks such as the Makwassie Quartz Porphyry of the Ventersdorp Supergroup or felsic rocks forming the Kaapvaal Craton. In addition, radiogenic Sr may have been acquired from dewatering of the Lokammona shales within the area, or expelled from amphibolite and granulite rocks involved in the Kheis or Namaqua Tectonic events. Two models are proposed to explain the genesis of the main Pering deposit and the occurrence of sphalerite in the vug-filling carbonates surrounding the deposit: 1) Mixing Model; and 2) Single Fluid Model. The Single Fluid Model is preferred which involves a single fluid migration and interaction with the carbonate host rock and/or pore fluid. The metals were probably transported as chloride complexes together with reduced sulphur at temperatures greater than 2000 C. Deposition of the ore minerals resulted from either a dilution of the fluid, a pH increase or a temperature decrease. Both dolomites and vug-filling carbonates have a model Pb age between 2.0 and 2.7. Secondary 1Ga model ages indicate a minor Namaqua tectonic influence. Carbon and oxygen isotopes indicate that the fluids originated in a deep burial environment. Future exploration work using cathodoluminescence microscopy and staining techniques will be both useful and cost-effective. Isotopic work should concentrate on the Rb-Sr system as radiogenic 87Sr/86Sr values are the best indicators of the path of the mineralizing fluid, and the proximity to ore concentrations. / Thesis (M.Sc.)-University of Natal, 1992.
76

Estimating soluble arsenic and phosphorus concentrations under Precambrian oceanic conditions / Estimering av lösta arsenik och fosfor koncentrationer i Prekambriska havsförhållanden

Hemmingsson, Christoffer January 2014 (has links)
Original estimates of phosphorus (P) concentrations in the Precambrian oceans before 1.9 Ga gave a budget of ~10-25% of modern day levels. This budget was challenged by accounting for high silica (Si) concentrations that were believed to have outcompeted P for binding sites on precipitating iron oxide-hydroxide particles during the chemical oxidation and burial of iron (Fe). Such iron oxide-hydroxide particles are considered as proxies of ancient iron-rich sedimentary rocks, such as banded iron formations, which are often used to infer the dissolved chemistry of trace elements in the ancient oceans. This study raises the question of wether arsenic (As) had an effect of the binding of P to precipitating iron minerals, during the co-precipitation of Iron oxide- hydroxide in elevated Fe and Si concentrations characteristic of the early oceans. This hypothesis is based on the chemical similarities seen between P and As. Results show a more pH dependent competition between P and AsIII, whereby P outcompetes AsIII at a pH <7. The effect decreases as the pH rises until pH ~8 at which the effect cancels out and AsIII becomes somewhat predominant over P. AsV on the other hand, an analogue to P, is outcompeted by P throughout pH 5-10. Distribution coefficients (Kd) of P on iron oxide-hydroxide particles were not affected by the concentration of Si in solution. Average Kd and standard error between concentrations of Si, across the sample pH of 5-10 revealed an average Kd of 0.072 (±0.01) μM-1. This is strikingly similar to another experimental Kd at 0.075 (±0.003) μM-1, when the effects of Si are excluded. The average Kd in this study is also consistent with the average Kd of 0.06 μM-1 from a range of As-rich hydrothermal systems reported in a previous study, supporting the original idea of Precambrian P levels being low. The average Kd between concentrations of Fe revealed a Kd of 0.12 (±0.03) μM-1 although this was not statistically significant from the average Kd between groups of Si. In addition to low levels of P, the Precambrian oceans likely also contained high levels of As, due to the high hydrothermal activity. This scavenging of P from oceanic waters would have become increasingly important as surface oceans became more oxygenated and the presence of AsV would have been greater. Because the availability of Si does not show any great effect on the uptake of P by precipitating iron oxide-hydroxides, Si concentration is likely not a proxy for oceanic P concentrations. It is proposed that low dissolved P levels are consistent with early oceans that w!ere a lot more hydrothermally influenced than the oceans of today. / Prekambriska fosfor (P) nivåer var ursprungligen estimerade till ca 10-25% utav koncentrationen funnen i dagens havsvatten. Denna budget blev motsagd i och med att kisel (Si) sades kunna ersätta bundet fosfor på järn oxid-hydroxid partiklar som precipiterade genom kemisk oxidation och sedimentering av järn (Fe). Dessa järn oxid-hydroxid partiklar anses användbara som proxy för formationen av uråldriga järn-rika sedimentära bergarter såsom banded iron formation (BIF), vilka används idag för att bestämma mängden spårämnen i de uråldriga haven. Denna studie ställer frågan huruvida arsenik (As) påverkar mängden P som binder till precipiterande järn mineral under procession av co-precipitering av järn oxid-hydroxid i lösning med förhöjda koncentrationer av Fe och Si, karakteristiska för the uråldriga haven. Denna hypotes är baserad på de kemiska likheter som finns mellan P och As. Resultaten påvisar en pH beroende konkurrens mellan P och AsIII där P utkonkurrerar AsIII vid låg pH. Effekten av denna konkurrans minskar med ökande pH tills effekten blir omvänd omkring pH 8 och P blir istället till viss del utkonkurrerad av AsIII. AsV å andra sedan, en verklig kemisk analog till P, är kontinuerligt utkonkurrerad av P genom alla utförda pH, pH 5-10. Distribueringskoefficienter (Kd) för P på järn oxid-hydroxid partiklar visade ingen påverkan av mängden Si tillgängligt. Medelvärdet av Kd och standard error mellan data av alls pH, grupperat av Si, gav ett värde av 0.072 (±0.01) μM-1. Detta är påfallande nära ett experimentellt framtaget Kd värde av 0.075 (±0.03) μM-1 då effekten av Si är borttagen. Medelvärdet i denna studie är också sammanfallande med det Kd medelvärde man finner idag från olika hydrotemala system av 0.063 (±0.01) μM-1. Detta ger support till den originala idén att de prekambriska haven troligen hade låga halter P tillgängligt. Medelvärdet av Kd mellan koncentrationer av Fe gav ett värde av 0.12 (±0.03) μM-1, dock var detta värde ej statistiskt significant från det Kd utifrån koncentrationer av Si. Förutom de låga nivåer av P i de Prekambriska haven så var det troligen även höga halter av As på grund av utbredd hydrotermal aktivitet. Detta uppfångande av P i de tidiga haven var troligen en alltmer viktigare process då ytvatten blev syrerikare och den oxiderade formen av As, det vill säga AsV hade varit mer vanligt förekommande. Framför allt då den konkurrerande effekten av Si kan bortses när P såväl som As inte påverkas av dess närvaro till den grad man hade trott. Detta gör även att mängden Si troligen inte är en tillförlitlig proxy för att estimera P nivåer i de uråldriga haven. Därmed föreslås det att de prekambriska haven var k!arakteriserade av låga P nivåer, jämfört med idag.
77

“Keratose” sponge fossils and microbialites: a geobiological contribution to the understanding of metazoan origin

Luo, Cui 10 February 2015 (has links)
No description available.
78

Insights into protenozoic tectonics from the southern Eyre Peninsula, South Australia / Bruce F. Schaefer.

Schaefer, Bruce F. January 1998 (has links)
Copies of author's previously published articles inserted. / Includes bibliographical references (6 leaves) / xi, 131, [71] leaves : ill., maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Geology and Geophysics, 1999
79

A comparative study of Archaean and Proterozoic felsic volcanic associations in Southern Australia / by Chris W. Giles

Giles, Christopher William January 1980 (has links)
Typescript (photocopy) / xiv, 220 leaves, [11] leaves of plates : ill., charts, maps ; 30 cm. + 2 fold. col. maps in end pocket / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Geology, 1982
80

Relationship of thermal evolution to tectonic processes in a proterozoic fold belt : Halls Creek Mobile Zone, East Kimberley, West Australia / by Rosemary Allen

Allen, Rosemary, 1935- January 1986 (has links)
Four folded ill. in v. 1 pocket / Four microfiches in v. 2 pocket / Lacks abstract. / Includes bibliography / 2 v. : ill. (some col.), maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, 1987

Page generated in 0.0351 seconds