• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interacting Effects of Predation and Competition in the Field and in Theory

Sommers, Pacifica January 2015 (has links)
The principle of competitive exclusion holds that the strongest competitor for a single resource can exclude other species. Yet in many systems, more similar species appear to stably coexist than the small number of limiting resources. Understanding how and when similar species can stably coexist has taken on new urgency in managing biological invasions and their ecological impacts. Recent theoretical advances emphasize the importance of predators in determining coexistence. The effects of predators, however, can be mediated by behavioral changes induced in their prey as well as by their lethality. In this dissertation, I ask how considering multiple trophic levels changes our understanding of how a grass invasion (Pennisetum ciliare) affects species diversity and dynamics in southeastern Arizona. In considering interactions with plant consumers, and with the predators of those consumers, this research reveals more general ecological processes that determine species diversity across biological communities. I first present evidence from a grass removal experiment in the field that shows increased emergence and short-term survival of native perennial plants without grass. This is consistent with Pennisetum ciliare causing the observed concurrent decline in native plant abundance following invasion. I then present results from greenhouse and field studies consistent with that suppression of native plants being driven primarily through resource competition rather than increased rodent granivory. Granivorous rodents do not solely function as consumers, however, because they cache their harvested seeds in shallow scatter-hoards, from which seeds can germinate. Rodents thus act also as seed dispersers in a context-dependent mutualism. The primary granivores in areas invaded by Pennisetum ciliare are pocket mice (genus Chaetodipus), which have a well-studied tendency to concentrate their activity under plant cover to avoid predation by owls. Because the dense canopy of the grass may provide safer refuge, I hypothesized the pocket mice may be directly dispersing native seeds closer to the base of the invasive grass. Such a behavior could increase the competitive effect of the grass on native plant species, further driving the impacts of the invasion. By offering experimental seeds dusted in fluorescent powder and tracking where the seeds were cached, I show that rodents do preferentially cache experimental seeds under the grass. This dispersal interaction may be more general to plant interactions with seed-caching rodents across semi-arid regions that are experiencing plant invasions. Finally, I ask how the predator avoidance behavior exhibited by these rodents affects their ability to coexist with one another. Not only could their diversity affect that of the plant community, but the effects of plant invasions can cascade through other trophic levels. Theoretical understanding of how similar predator avoidance strategy alters coexistence had not yet been developed, however. Instead of a field study, therefore, I modified a general consumer-resource model with three trophic levels to ask whether avoidance behavior by the middle trophic level alters the ability of those species to coexist. I found that more effective avoidance behavior, or greater safety for less cost, increased the importance of resource partitioning in determining overall niche overlap. Lowering niche overlap between two species promotes their coexistence in the sense that their average fitness can be more different and still permit coexistence. These results provide novel understanding of behavioral modifications to population dynamics in multi-trophic coexistence theory applicable to this invasion and more broadly.
2

Effects of Intertidal Position on the Capacity for Anaerobic Metabolism and Thermal Stress Response in the Common Acorn Barnacle, Balanus glandula

Anderson, Kyra 01 February 2022 (has links) (PDF)
Intertidal habitats are characterized by dynamic, tidally-driven fluctuations in abiotic and biotic factors. Many of the environmental stressors that vary across the intertidal (e.g., temperature, oxygen, food availability, predation pressure) are strong drivers of metabolic rate in ectotherms. As such, we predicted that there may be pronounced differences in the metabolic and stress physiology of conspecific sessile invertebrates occupying at different relative tidal heights. The common acorn barnacle Balanus glandula represents an ideal model organism in which to investigate the possibility of tidal height-dependent physiological differences, owing to their wide distribution in the intertidal zone and their eurytolerant nature. In the first chapter of my thesis, we investigate the hypothesis that B. glandula anchored in the low intertidal have a greater capacity for anaerobic metabolism than conspecifics in the high intertidal, and that this is due to increased predation pressure during submersion. Further, we explore the temporal and spatial fidelity of certain tidal-height driven trends in lactate dehydrogenase activity previously observed in our lab (i.e., higher LDH activity in low intertidal barnacles; Horn et al., 2021), and attempt to identify environmental variables that drive plasticity in LDH activity. We found that, in general, there were higher densities of B. glandula and gastropod whelk predators in the low intertidal compared to the high intertidal, but follow-up studies in the lab revealed that opercular closure in B. glandula was induced by predator exposure (Acanthinucella spirata) for less than 24h. This time frame for shell closure is unlikely to result in internal hypoxia or enhance capacity for anaerobic metabolism. We were therefore not surprised to find that LDH activity in B. glandula was likewise not affected by predator exposures (48h) carried out in the lab. After failing to find an effect of predators on LDH activity in B. glandula, we attempted to replicate the previous finding that LDH activity was highest in low intertidal populations of B. glandula. We did this at the original location in San Luis Obispo Bay, CA as well as at three novel field sites and across seasons and years. While we did observe variation in LDH activity over time and between sites, we did not consistently observe the same trend in LDH activity whereby low intertidal barnacles had the highest activity. In response to these variable patterns, we attempted to identify what environmental parameters, other than predation, might be responsible for plasticity in LDH activity. Unfortunately, neither temperature nor emersion stress – the two variables we examined – had any significant an effect on LDH activity in B. glandula. These data suggest that there must be multiple, interacting stressors – including tidal position - that influence the anaerobic metabolic capacity of B. glandula. In the second chapter of my thesis, we went on to investigate how the response to thermal stress might differ between populations of B. glandula from different vertical heights in the intertidal zone. To this end, we assessed how aerial temperature stress affected oxygen consumption rates (MO2), superoxide dismutase (SOD) activity, and time to mortality in B. glandula collected from both low and high intertidal positions. We found that barnacles from the low intertidal showed a significant increase in MO2 with higher temperature, while MO2 was unaffected by temperature in B. glandula from the high intertidal. We also observed that SOD activity levels were higher in the high intertidal barnacles compared to the low intertidal barnacles, although neither group was increasing SOD activity under higher temperature. Finally, we observed significantly longer survival times during thermal stress in barnacles from the high intertidal zone (e.g., LT50 = 8.75 h vs 5 h at 33˚C for the high and low barnacles, respectively), although this advantage seemed to be lost with the addition of desiccation stress at these same temperatures. It is evident that life in highest reaches of the intertidal zones is physiologically challenging, and this has resulted in a population of B, glandula barnacles that are less sensitive to and better suited to tolerate temperature extremes than conspecifics in the lowest intertidal regions. Understanding how habitat variation may differentially impact the metabolic and thermal stress physiology of B. glandula is increasingly important as climate change progresses. This is particularly significant considering that organisms in the intertidal already reside within a relatively stressful environment and may be living closer to their thermal tolerance limits than animals from less extreme habitats.
3

Biogeographic Patterns, Predator Identity, and Chemical Signals Influence the Occurrence and Magnitude of Non-lethal Predator Effects

Large, Scott Isaac 2011 August 1900 (has links)
Predators can have large effects on prey populations and on the structure and function of communities. In addition to direct consumption of prey, predators often cause prey to alter their foraging behavior, habitat selection, and morphology. These non-lethal effects of predators can propagate to multiple trophic levels and often exert equal or larger effects upon communities than those of direct consumption. For non-lethal predatory effects to occur, prey must detect and respond to predation risk. While the importance of information transfer in this process has been realized, few studies explore how prey responses are influenced by predator characteristics and environmental conditions that influence the transmission of cues indicative of predation risk. In this dissertation I investigate factors that influence how a single prey species evaluates and responds to predation risk. Here, I examined: 1) the type and nature of cues prey use to evaluate predator risk; 2) how predator identity, predator diet, and the relative risk of predators influence prey response to predation risk; 3) how hydrodynamic conditions influence the delivery of predator cues; 4) how biogeographic trends in predator distribution influence prey response to predation risk; and 5) how genetic structure might vary according to prey geographic location and habitat. To address these questions, I used a common intertidal model system consisting of the rocky intertidal whelk Nucella lapillus (Linnaeus, 1758) and a suite of its predators, the native rock crab Cancer irroratus (Say, 1817), Jonah crab Cancer borealis (Stimpson, 1859), and the invasive green crab Carcinus maenas (Linnaeus, 1758). Nucella use chemical cues emanating from their most common predator (Carcinus maenas) and crushed conspecifics to evaluate predation risk. Nucella from different habitats experience different levels of predation risk, and Nucella from habitats with high levels of predation had larger antipredatory responses to predator risk cues than Nucella that experienced less predation. These chemical cues indicative of predation risk are influenced by hydrodynamic conditions, and Nucella have the strongest anti-predatory response in flow velocities of u= ~4- 8 cm s^-1. Furthermore, Nucella from geographic regions where green crabs are historically absent did not elicit anti-predatory responses, while Nucella from regions where green crabs are common frequently responded. Findings from my dissertation research demonstrate that prey detection and response to predation risk is highly dependent upon predator identity, predator diet, environmental forces, and biogeographic patterns in predator and prey distributions.

Page generated in 0.0819 seconds