1 |
Temporal estimation in prediction motion tasks is biased by a moving destinationFlavell, Jonathan, Barrett, Brendan T., Buckley, John, Harris, J.M., Scally, Andy J., Beebe, Nathan B., Cruickshank, Alice G., Bennett, S.J. 12 2017 (has links)
Yes / An ability to predict the time-to-contact (TTC) of moving objects that become momentarily hidden is advantageous in everyday life and could be particularly so in fast-ball sports. Prediction motion (PM) experiments have sought to test this ability using tasks where a disappearing target moves towards a stationary destination. Here, we developed two novel versions of the PM task in which the destination either moved away from (Chase) or towards (Attract) the moving target. The target and destination moved with different speeds such that collision occurred 750, 1000 or 1250ms after target occlusion. To determine if domain-specific experience conveys an advantage in PM tasks, we compared the performance of different sporting groups ranging from internationally competing athletes to non-sporting controls. There was no difference in performance between sporting groups and non-sporting controls but there were significant and independent effects on response error by target speed, destination speed and occlusion period. We simulated these findings using a revised version of the linear TTC model of response timing for PM tasks (Yakimoff et al. 1987, 1993) in which retinal input from the moving destination biases the internal representation of the occluded target. This revision closely reproduced the observed patterns of response error and thus describes a means by which the brain might estimate TTC when the target and destination are in motion.
|
2 |
The Accuracy of Time-to-Contact Estimation in the Prediction Motion ParadigmPei, Jiantao, n/a January 2002 (has links)
This thesis is concerned with the accuracy of our estimation of time to make contact
with an approaching object as measured by the “Prediction Motion” (PM) technique.
The PM task has commonly been used to measure the ability to judge time to contact
(TTC). In a PM task, the observer's view of the target is occluded for some period
leading up to the moment of impact. The length of the occlusion period is varied and
the observer signals the moment of impact by pressing a response key. The interval
separating the moment of occlusion and the response is interpreted as the observer's
estimate of TTC made at the moment of occlusion. This technique commonly
produces large variability and systematic underestimation. The possibility that this
reflects genuine perceptual errors has been discounted by most writers, since this
seems inconsistent with the accuracy of interceptive actions in real life. Instead, the
poor performance in the PM task has been attributed to problems with the PM
technique. Several hypotheses have been proposed to explain the poor PM
performance. The motion extrapolation hypothesis asserts that some form of mental
representation of the occluded part of the trajectory is used to time the PM response;
the errors in PM performance are attributed to errors in reconstructing the target
motion. The clocking hypothesis assumes that the TTC is accurately perceived at the
moment of occlusion and that errors arise in delaying the response for the required
period. The fear-of-collision hypothesis proposes that the underestimation seen in
the PM tasks reflects a precautionary tendency to anticipate the estimated moment of
contact. This thesis explores the causes of the errors in PM measurements.
Experiments 1 and 2 assessed the PM performance using a range of motion scenarios
involving various patterns of movement of the target, the observer, or both. The
possible contribution of clocking errors to the PM performance was assessed by a
novel procedure designed to measure errors in the wait-and-respond component of
the PM procedure. In both experiments, this procedure yielded a pattern of
systematic underestimation and high variability similar to that in the TTC estimation
task. Experiment 1 found a small effect of motion scenario on TTC estimation.
However, this was not evident in Experiment 2.
The collision event simulated in Experiment 2 did not involve a solid collision. The
target was simply a rectangular frame marked on a tunnel wall. At the moment of
“contact”, the observers passed “through” the target without collision. However,
there was still systematic underestimation of TTC and there was little difference
between the estimates obtained in Experiments 1 and 2. Overall, the results of
Experiments 1 and 2 were seen as inconsistent with either the motion extrapolation
hypothesis or the fear-of-collision hypothesis. It was concluded that observers
extracted an estimate of the TTC based on optic TTC information at a point prior to
the moment of collision, and used a timing process to count down to the moment of
response. The PM errors were attributed to failure in this timing process. The results
of these experiments were seen as implying an accurate perception of TTC.
It was considered possible that in Experiments 1 and 2 observers based their TTC
judgements on either the retinal size or the expansion rate of the target rather than
TTC. Experiments 3 and 4 therefore investigated estimation of TTC using a range of
simulated target velocities and sizes. TTC estimates were unaffected by the resulting
variation in expansion rate and size, indicating that TTC, rather than retinal size or
image expansion rate per se, was used to time the observers' response.
The accurate TTC estimation found in Experiments 1-4 indicates that the TTC
processing is very robust across a range of stimulus conditions. Experiment 5 further
explored this robustness by requiring estimation of TTC with an approaching target
which rotated in the frontoparallel plane. It was shown that moderate but not fast
rates of target rotation induced an overestimation of TTC. However, observers were
able to discriminate between TTCs for all rates of rotation. This shows that the
extraction of TTC information is sensitive to perturbation of the local motion of the
target border, but it implies that, in spite of these perturbations, the mechanism is
flexible enough to pick up the optic TTC information provided by the looming of the
retinal motion envelop of the rotating stimulus.
|
3 |
The Influence of Attentional Entrainment on Temporal and Spatial Predictions of Inferred MotionPatrick, Timothy 07 August 2019 (has links)
No description available.
|
4 |
Porovnání možností komprese multimediálních signálů / Comparison of Multimedia Signal Compression PossibilitiesŠpaček, Milan January 2013 (has links)
Thesis deals with multimedia signal comparison of compression options focused on video and advanced codecs. Specifically it describes the encoding and decoding of video recordings according to the MPEG standard. The theoretical part of the thesis describes characteristic properties of the video signal and justification for the need to use recording and transmission compression. There are also described methods for elimination of encoded video signal redundancy and irrelevance. Further on are discussed ways of measuring the video signal quality. A separate chapter is focused on the characteristics of currently used and promising codecs. In the practical part of the thesis were created functions in Matlab environment. These functions were implemented into graphic user interface that simulates the activity of functional blocks of the encoder and decoder. Based on user-specified input parameters it performs encoding and decoding of any given picture, composed of images in RGB format, and displays the outputs of individual functional blocks. There are implemented algorithms for the initial processing of the input sequence including sub-sampling, as well as DCT, quantization, motion compensation and their inverse operations. Separate chapters are dedicated to the realisation of codec description in the Matlab environment and to the individual processing steps output. Further on are mentioned compress algorithm comparisons and the impact of parameter change onto the final signal. The findings are summarized in conclusion.
|
Page generated in 0.093 seconds