Spelling suggestions: "subject:"predicativism"" "subject:"predictivas""
1 |
Um estudo comparativo entre abordagens Bayesianas à testes de hipóteses / A comparative study of Bayesian approaches to hypothesis testingMelo, Brian Alvarez Ribeiro de 04 March 2013 (has links)
Neste trabalho, consideramos uma população finita composta por N elementos, sendo que para cada unidade está associado um número (ou vetor) de tal forma que temos para a população o vetor de valores X = (X1, ... ,XN), onde Xi denota a característica de interesse do i-ésimo indivíduo da população, que suporemos desconhecida. Aqui assumimos que a distribuição do vetor X é permutável e que existe disponível uma amostra composta por n < N elementos. Os objetivos são a construção de testes de hipóteses para os parâmetros operacionais, através das distribuições a posteriori obtidas sob a abordagem preditivista para populações finitas e a comparação com os resultados obtidos a partir dos modelos Bayesianos de superpopulação. Nas análises consideramos os modelos Bernoulli, Poisson, Uniforme Discreto e Multinomial. A partir dos resultados obtidos, conseguimos ilustrar situações nas quais as abordagens produzem resultados diferentes, como prioris influenciam os resultados e quando o modelo de populações finitas apresenta melhores resultados que o modelo de superpopulação. / We consider a finite population consisting of N units and to each unit there is a number (or vector) associated such that we have for the population the vector of values X = (X1, ..., XN), where Xi denotes the characteristic of interest of the i-th individual in the population, which we will suppose unknown. Here we assume that the distribution of the vector X is exchangeable and that there is available a sample of size n < N from this population. The goals are to derive tests of hipotheses for the operational parameters through the corresponding posterior distributions obtained under the predictivistic approach for finite populations and to compare them with the results obtained from the usual Bayesian procedures of superpopulation models. In the analysis, the following models are considered: Bernoulli, Poisson, Discrete Uniform and Multinomial. From the results, we can identify situations in which the approaches yield dierent results, how priors influence the results of hipothesis testing and when the finite population model performs better than the superpopulation one.
|
2 |
Um estudo comparativo entre abordagens Bayesianas à testes de hipóteses / A comparative study of Bayesian approaches to hypothesis testingBrian Alvarez Ribeiro de Melo 04 March 2013 (has links)
Neste trabalho, consideramos uma população finita composta por N elementos, sendo que para cada unidade está associado um número (ou vetor) de tal forma que temos para a população o vetor de valores X = (X1, ... ,XN), onde Xi denota a característica de interesse do i-ésimo indivíduo da população, que suporemos desconhecida. Aqui assumimos que a distribuição do vetor X é permutável e que existe disponível uma amostra composta por n < N elementos. Os objetivos são a construção de testes de hipóteses para os parâmetros operacionais, através das distribuições a posteriori obtidas sob a abordagem preditivista para populações finitas e a comparação com os resultados obtidos a partir dos modelos Bayesianos de superpopulação. Nas análises consideramos os modelos Bernoulli, Poisson, Uniforme Discreto e Multinomial. A partir dos resultados obtidos, conseguimos ilustrar situações nas quais as abordagens produzem resultados diferentes, como prioris influenciam os resultados e quando o modelo de populações finitas apresenta melhores resultados que o modelo de superpopulação. / We consider a finite population consisting of N units and to each unit there is a number (or vector) associated such that we have for the population the vector of values X = (X1, ..., XN), where Xi denotes the characteristic of interest of the i-th individual in the population, which we will suppose unknown. Here we assume that the distribution of the vector X is exchangeable and that there is available a sample of size n < N from this population. The goals are to derive tests of hipotheses for the operational parameters through the corresponding posterior distributions obtained under the predictivistic approach for finite populations and to compare them with the results obtained from the usual Bayesian procedures of superpopulation models. In the analysis, the following models are considered: Bernoulli, Poisson, Discrete Uniform and Multinomial. From the results, we can identify situations in which the approaches yield dierent results, how priors influence the results of hipothesis testing and when the finite population model performs better than the superpopulation one.
|
3 |
Permutabilidade de quantidades aleatórias binárias e a falácia do apostador / Exchangeability of binary random quantities and the gambler\'s fallacyBonassi, Fernando Vieira 03 March 2009 (has links)
O elemento central deste estudo é o problema de predição em seqüências de variáveis aleatórias binárias (0-1). Modelos são estudados para esse tipo de situação e então relacionados com a Falácia do Apostador - um famoso caso de estudo da Psicologia (também conhecida como Lei da Maturidade). Estudos estatísticos anteriores propõem tal modelagem sob a perspectiva bayesiana. Neles, tem-se a suposição de permutabilidade infinita e, como conseqüência, a maturidade é um comportamento inadmissível. Neste estudo, um novo modelo é apresentado, no qual a crença do apostador não é necessariamente uma falácia. Este é o modelo preditivista usual de população finita e, portanto, somente quantidades com significado operacional (parâmetros operacionais) são envolvidas. Uma classe de prioris para o parâmetro operacional que resulta em modelos não estendíveis é apresentada. Trata-se de uma classe de distribuições que definimos como mais estreitas que a Binomial. Maturidade é uma conseqüência da crença em prioris dessa classe. Apresenta-se ainda uma subclasse referente às distribuições mais estreitas de segunda ordem que a Binomial. Para prioris dessa subclasse tem-se taxa de falha preditiva crescente, que pode ser interpretado como o resultado mais extremo de maturidade. Os resultados deste estudo podem contribuir para o julgamento de quão razoável é a suposição de permutabilidade infinita em relação ao típico comportamento humano. Outra principal contribuição está associada ao estudo de condições de estendibilidade em processos binários. / We study the problem of prediction in sequences of binary random variables. Models are studied for this kind of situation and then considered vis-à-vis the Gambler\'s Fallacy - a famous case study in Psychology (also known as Law of Maturity). Previous statistical studies proposed such modeling under the bayesian perspective. In them there is the assumption of exchangeability and, as a result, maturity is a inadmissible behavior. In this study, a new model in which the Gambler\'s belief need not be a fallacy is presented. This one is the usual finite population model and, therefore, only operationally meaningful quantities (operational parameters) are involved. A class of prior distributions for the operational parameter which yield non-extendable models is presented. It is a class of distributions which we defined as tighter than the Binomial. Maturity is a consequence of the belief in the prior distributions of this class. Furthermore, a subclass which refers to the distributions that are second-order tighter than the Binomial is presented. For prior distributions of this subclass the predictive failure rate is increasing, which can be interpreted as the most extreme case of maturity. The results of this study may contribute on the judgment of how reasonable the assumption of infinite exchangeability is relative to typical human perception. Another major contribution is related to the study on extendibility conditions in binary processes.
|
4 |
Permutabilidade de quantidades aleatórias binárias e a falácia do apostador / Exchangeability of binary random quantities and the gambler\'s fallacyFernando Vieira Bonassi 03 March 2009 (has links)
O elemento central deste estudo é o problema de predição em seqüências de variáveis aleatórias binárias (0-1). Modelos são estudados para esse tipo de situação e então relacionados com a Falácia do Apostador - um famoso caso de estudo da Psicologia (também conhecida como Lei da Maturidade). Estudos estatísticos anteriores propõem tal modelagem sob a perspectiva bayesiana. Neles, tem-se a suposição de permutabilidade infinita e, como conseqüência, a maturidade é um comportamento inadmissível. Neste estudo, um novo modelo é apresentado, no qual a crença do apostador não é necessariamente uma falácia. Este é o modelo preditivista usual de população finita e, portanto, somente quantidades com significado operacional (parâmetros operacionais) são envolvidas. Uma classe de prioris para o parâmetro operacional que resulta em modelos não estendíveis é apresentada. Trata-se de uma classe de distribuições que definimos como mais estreitas que a Binomial. Maturidade é uma conseqüência da crença em prioris dessa classe. Apresenta-se ainda uma subclasse referente às distribuições mais estreitas de segunda ordem que a Binomial. Para prioris dessa subclasse tem-se taxa de falha preditiva crescente, que pode ser interpretado como o resultado mais extremo de maturidade. Os resultados deste estudo podem contribuir para o julgamento de quão razoável é a suposição de permutabilidade infinita em relação ao típico comportamento humano. Outra principal contribuição está associada ao estudo de condições de estendibilidade em processos binários. / We study the problem of prediction in sequences of binary random variables. Models are studied for this kind of situation and then considered vis-à-vis the Gambler\'s Fallacy - a famous case study in Psychology (also known as Law of Maturity). Previous statistical studies proposed such modeling under the bayesian perspective. In them there is the assumption of exchangeability and, as a result, maturity is a inadmissible behavior. In this study, a new model in which the Gambler\'s belief need not be a fallacy is presented. This one is the usual finite population model and, therefore, only operationally meaningful quantities (operational parameters) are involved. A class of prior distributions for the operational parameter which yield non-extendable models is presented. It is a class of distributions which we defined as tighter than the Binomial. Maturity is a consequence of the belief in the prior distributions of this class. Furthermore, a subclass which refers to the distributions that are second-order tighter than the Binomial is presented. For prior distributions of this subclass the predictive failure rate is increasing, which can be interpreted as the most extreme case of maturity. The results of this study may contribute on the judgment of how reasonable the assumption of infinite exchangeability is relative to typical human perception. Another major contribution is related to the study on extendibility conditions in binary processes.
|
Page generated in 0.0519 seconds