• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inflammation and Altered Signaling in Obstetric Pathologies

Tsai, Ya-Fang 12 August 2021 (has links)
The purpose of this research project was to elucidate the molecular interactions and detail the signaling pathways in obstetric pathologies. This work first seeks to understand inflammation related complications relevant to obstetrics. Prior research in our lab identified the implications of the receptor of advanced glycation end products (RAGE) during inflammatory response in the placenta. Current work identified the presence of DNA double-strand breaks (DNA-DSBs) in inflammation associated pregnancy complications of preeclampsia (PE) and preterm labor (PTL) and demonstrated the positive role of RAGE in repairing the damage. The confluent relevance of disrupted mitochondrial function and inflammation has been recognized in the etiology of numerous chronic diseases. Our current studies aim to understand the connections between energy metabolism and inflammation in pathologies of pregnancy complications. Previous research conducted in our laboratory has demonstrated the mediation of the Gas6/Axl pathway on the mechanistic target of rapamycin (mTOR), an important metabolic molecule. We observed the negative regulation of Gas6 treatment on the mTOR pathway and its negative effects on trophoblast cell invasion. In the current study looking at the aspect of energy regulation, we identified the activation of placental mTOR in gestational diabetes mellitus (GDM) and its decrease during PE and intrauterine growth restriction (IUGR). We further evaluated the regulation of mTOR on its downstream effector pyruvate kinase M2 (PKM2). We found that inhibition of mTOR decreased PKM2 activation; while PKM2 activation positively regulated trophoblastic invasion and rescued negative effects observed in our second-hand smoke IUGR murine model. Our work has opened a new direction of placental research, especially in pregnancy complications stemming from genomic instability. We also clarified details of mTOR and PKM2 meditated metabolic signaling that are crucial for future investigation on the dynamic metabolic regulation during pregnancy.
2

Immunogenetic regulation of Natural Killer cell function in pregnancy

Gaynor, Louise Michelle January 2017 (has links)
Uterine NK (uNK) cells are a distinct subset of NK cells in the decidua of humans and rodents during pregnancy, which are essential for remodelling of the spiral arteries supplying the feto-placental unit. Similarly to peripheral NK cells, uNK cells express Natural Killer receptors (NKRs) that engage MHC class I molecules. Evidence from human genetic association studies suggests that, in the presence of allogeneic cognate paternal MHC class I ligands, inhibitory uterine NKRs are associated with disorders of pregnancy arising from impaired decidual vascular remodelling. Conversely, enhancement of human uNK cell activity through activating NKRs is associated with high birth weight. Evidence from mouse models corroborates that uNK cell activity is modulated by interactions between NKRs and MHC class I, but has largely focussed on the effect of paternal MHC. In this study, the contribution of maternal immunogenetic regulation of NK cell function to reproductive outcome was assessed independently of parental MHC disparity in mice. To evaluate the role of NKR genes in isolation, I used congenic B6.BALB-TC1 (TC1) mice that differ from C57BL/6 (B6) mice only within the region of chromosome six encoding NKRs that recognise MHC class I. Absence of a major inhibitory NKR for self-MHC, Ly49I, in TC1 mice causes a compensatory shift in the NKR repertoire expressed and preserves a majority subpopulation of educated NK cells. B6 and TC1 splenic and uterine NK cells are similarly functionally reactive and mature, and no significant differences could be detected in spiral arterial remodelling or fetal growth between these strains in MHC-syngeneic matings. This supports data from human immunogenetic studies showing that maternal uterine NKRs are not associated with differences in pregnancy outcome in the absence of novel paternal MHC class I ligands, and highlights the importance of maternal and paternal co-regulation of uNK cell activity during pregnancy. No mouse models of uNK cell activation are currently available with which to corroborate human immunogenetic associations between activating uterine NKRs and high birth weight. Male m157-transgenic (m157-Tg) mice, which ubiquitously express viral m157 glycoprotein ligands for the activating NKR Ly49H, were mated with B6 females. Exclusive expression of m157 glycoprotein by trophoblast improved placental efficiency, but did not enhance fetal growth. Some fertility clinics surmise that uNK cell activation initiates the pathogenesis of spontaneous abortion. It has been suggested that this may occur due to reduced expression by human uNK cells of miR-483-3p, which stimulates endogenous insulin-like growth factor (IGF)-1 production and uNK cell cytotoxicity in vitro. It is demonstrated here that neither miR-483-3p nor IGF-1 regulate murine NK cell development, maturation or function. No discernible reproductive phenotype is evident in miR-483 deficient females. It can be inferred that post-transcriptional control by miR-483 is not biologically relevant to murine NK cell function. Although m157-Tg mice may provide an interesting model to further study uNK cell-mediated placental adaptations, it remains important to identify a murine model of enhanced uNK cell function to corroborate human immunogenetic associations with high birth weight and to challenge the supposition that uNK cell activation is harmful to pregnancy.

Page generated in 0.0696 seconds