• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PHYSICAL PROPERTIES OF REPRESSURIZED SAMPLES RECOVERED DURING THE 2006 NATIONAL GAS HYDRATE PROGRAM EXPEDITION OFFSHORE INDIA

Winters, W.J., Waite, W.F., Mason, D.H., Kumar, P. 07 1900 (has links)
As part of an international cooperative research program, the U.S. Geological Survey (USGS) and researchers from the National Gas Hydrate Program (NGHP) of India are studying the physical properties of sediment recovered during the NGHP-01 cruise conducted offshore India during 2006. Here we report on index property, acoustic velocity, and triaxial shear test results for samples recovered from the Krishna-Godavari Basin. In addition, we discuss the effects of sample storage temperature, handling, and change in structure of fine-grained sediment. Although complex, sub-vertical planar gas-hydrate structures were observed in the silty clay to clayey silt samples prior to entering the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI), the samples yielded little gas post test. This suggests most, if not all, gas hydrate dissociated during sample transfer. Mechanical properties of hydrate-bearing marine sediment are best measured by avoiding sample depressurization. By contrast, mechanical properties of hydrate-free sediments, that are shipped and stored at atmospheric pressure can be approximated by consolidating core material to the original in situ effective stress.
2

TESTING OF PRESSURISED CORES CONTAINING GAS HYDRATE FROM DEEP OCEAN SEDIMENTS

Clayton, Chris R.I., Kingston, Emily, Priest, Jeffery, Schultheiss, Peter, NGHP Expedition 01 Scientific Party 07 1900 (has links)
The recent development and deployment of HYACINTH and IODP PCS pressure cores on the JOIDES Resolution during Expedition 1 of the Indian National Gas Hydrate Program (NGHP-1) has provided some of the first “undisturbed” samples of gas hydrate in fine grained marine sediments. Some samples, once recovered from the seafloor, were subject to rapid depressurization and subsequent immersion in liquid nitrogen, at approximately -196oC, for use in subsequent laboratory test programs. This paper describes the techniques used at Southampton University, the difficulties encountered, and the results obtained from geotechnical testing of these samples. The original intention had been to pressurize and unfreeze the material before testing it in the Gas Hydrate Resonant Column (GHRC) Apparatus. Initial CT scanning of the samples showed that the sample quality might be too poor for such testing, and this proved to be the case. Instead a suite of geotechnical testing was carried out, the results of which are reported and interpreted in this paper.
3

THE STRUCTURE OF HYDRATE BEARING FINE GRAINED MARINE SEDIMENTS

Priest, Jeffery, Kingston, Emily, Clayton, Chris R.I., Schultheiss, Peter, Druce, Matthew, NGHP Expedition 01 Scientific Party 07 1900 (has links)
Recent advances in pressure coring techniques, such as the HYACINTH and IODP PCS pressure cores deployed during Expedition 1 of the India National Gas Hydrate Program using the JOIDES Resolution have enabled the recovery of fine grained sediments with intact gas hydrates contained within the sediments. This has provided the opportunity to study the morphology of gas hydrates within fine grained sediments which until now has been hindered due to the long transit times during core recovery leading to the dissociation of the gas hydrates. Once recovered from the seafloor, rapid depressurization and subsequent freezing of the cores in liquid nitrogen has enabled the near complete fine fracture filling nature of the gas hydrates to be largely preserved. High resolution X-ray CT (computer tomography), which has a pixel resolution of approx. 0.07mm, has been used to provide detailed images showing the 3-dimensional distribution of hydrates within the recovered fine grained sediments. Results have shown that in fine grained sediments gas hydrates grow along fine fracture faults within the sediment. Although the fractures were predominantly sub-vertical and continuous through the cores, stranded fractures were also observed suggesting that hydrate formation is episodic. However, within the cores open voids were observed which were not evident in low resolution CT images taken before the depressurization step suggesting that during depressurization either finely disseminated gas hydrate was dissociated or that gas exsolving from solution created these voids in the sample prior to freezing in liquid nitrogen. These detailed observations of gas hydrate in fine grained sediments will help us understand the differing morphology of gas hydrates in sediments. They also show that sample disturbance is still a major concern and further techniques are required to restrict these effects so that meaningful laboratory tests can be undertaken on recovered samples.

Page generated in 0.2061 seconds