• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Behavioral Responses of Willow Flycatchers, <i>Empidonax traillii</i>, to a Heterogeneous Environment

Bakian, Amanda V. 01 May 2011 (has links)
Spatial heterogeneity impacts population and community-level dynamics including species-level dispersal patterns, the use and availability of refugia, predator/prey dynamics, and reproductive fitness. Understanding how wild animal populations respond to environmental heterogeneity is essential for their proper management and conservation. In this study, I examine the responses of Willow Flycatchers to spatial heterogeneity in the distribution of their food and habitat resources. Over the course of three breeding seasons, I radio- tracked Willow Flycatchers at Fish Creek in Manti-La Sal National Forest in Utah, recorded detailed behavior data at each radio location, and collected fecal, feather and insect samples. I formulated individual and population-level Bayesian spatial resource selection functions to model Willow Flycatcher foraging and vocalization behavior on multiple scales. These models indicate that vocalization and foraging behavior are spatially segregated within the home ranges of Willow Flycatchers. Further, Willow Flycatchers were found to use mature riparian habitat for vocalizing while they used a variety of habitat types for foraging. The insect samples were used to identify distinct carbon and nitrogen stable isotope signatures for the aquatic and terrestrial insect communities at Fish Creek. In conjunction with the fecal samples, I used the stable isotope signatures to determine the contribution of aquatic versus terrestrial insects to the Willow Flycatcher diet. Aquatic insects comprised a larger proportion of the diet of adult than nestling Willow Flycatchers. This suggests that adult flycatchers consume a diet that is distinct from the one they feed to their nestlings. Finally, I compared space use characteristics in two populations of Willow Flycatchers: a population of the endangered Southwestern Willow Flycatcher at Roosevelt Lake, Arizona and another belonging to a non-endangered subspecies of Willow Flycatcher at Fish Creek, Utah. Differences in space use were found largely among breeding flycatchers while space use characteristics in non-breeding Willow Flycatchers did not differ across populations. This suggests that space use patterns in non-breeding Southwestern Willow Flycatchers may be generalizable to non-breeding flycatchers from non-endangered populations. This study expands our understanding of how Willow Flycatchers respond to spatial heterogeneity while its key findings have management and conservation implications for the species.
2

Investigating Sub-tropical Community Resistance and Resilience to Climate Disturbance

Boucek, Ross E 31 August 2016 (has links)
Changes in global climate will likely increase climate variability. In turn, changes in climate variability have begun to alter the frequency, intensity, and timing of climate disturbances. Continued changes in the climate disturbance regime experienced by natural systems will undoubtedly affect ecological processes at every hierarchical scale. Thus, in order to predict the dynamics of ecological systems in the future, we must develop a more mechanistic understanding of how and in what ways climate disturbance affects natural systems. In South Florida, two climate disturbances recently affected the region, a severe cold spell in 2010, and a drought in 2011. Importantly, these disturbances affected an ecosystem of long-term, comprehensive, and persistent ecological study in the Shark River estuary in the Everglades National Park. The aims of my dissertation were to (1) assess the relative severity of these two climate disturbances, (2) identify effects of these disturbances on community structuring, (3) compare community change from the 2010 cold spell with community change from another extreme cold spell that affected sub-tropical China in 2008, (4) assess the effects of the drought on predator prey interactions in the Shark River and (5) apply a spatial approach to predicting population resistance to these events. My results show that the 2010 cold spell was the most severe cold event to affect the Shark River in the last 80 years, while the drought was the worst drought to occur in the last 10 years. The cold spell drove community change that was predictable based on the traits of component species, whereas community change was less predictable using trait-based approaches. When comparing community change from the extreme 2010 event in Florida with the event in China, I identified three consistencies related to community change from extreme cold events that occurred across both events that will help build generalized understanding of community resistance to increasingly extreme climate events in the future. From the trophic study, I found that the drought reduced prey for estuarine piscivores. Not only was prey biomass reduced, the drought drove a compositional shift in prey communities from fish to invertebrates, which are lower in calories. Last, I found that animal movement may create temporally dynamic resistance scenarios that should be accounted for when developing predictive models.

Page generated in 0.0657 seconds