• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inkjet-Printed In-Vitro Organic Electronic Devices

Asghar, Hussain 09 1900 (has links)
In-vitro electronic devices are promising to dynamically monitor minute-changes in biological systems. Electronic devices based on conducting polymers such as poly(3,4- ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) provide suitable and attractive substrates for biointerfacing. The soft polymer surface acts as a cushion for the living systems to interface while electronically detecting their properties. However, to this date, most bioelectronics devices have been fabricated via multi-step lithography techniques, which do not allow for mass fabrication and hence high throughput biosensing. Inkjet printing presents an alternative to fabricate organic bioelectronic devices. Besides being low-cost, inkjet printing allows to fabricate several devices in a short time with flexible design patterns and minimal material waste. Here, using inkjet printing, we fabricated PEDOT:PSS based organic electrochemical transistors (OECTs) for biomembrane interfacing. We optimized the deposition of various inks (silver nanoparticles (AgNPs), PEDOT:PSS, and the dielectric SU-8) used during the fabrication of these devices. We characterized the electrical characteristics of all-printed OECTs with various geometries and identified the high-performing ones. Due to the flexibility of ink optimization and design patterns, these all inkjet-printed electronic devices provide an alternative for mass production of biointerfacing platforms.
2

Influences of Printing Techniques on the Electrical Performances of Conjugated Polymers for Organic Transistors

Manuelli, Alessandro 11 January 2007 (has links) (PDF)
The discovery of conducting and semiconducting polymers has opened the possibility to produce integrated circuits entirely of plastic with standard continuous printing techniques. Nowadays several of this polymers are commercial available, however the performances of this materials are strongly affected by their supramolecular order achieved after deposition. In this research, the influence of some standard printing techniques on the electrical performances of conjugated polymers is evidenced in order to realise logic devices with these materials.
3

Influences of Printing Techniques on the Electrical Performances of Conjugated Polymers for Organic Transistors

Manuelli, Alessandro 20 July 2006 (has links)
The discovery of conducting and semiconducting polymers has opened the possibility to produce integrated circuits entirely of plastic with standard continuous printing techniques. Nowadays several of this polymers are commercial available, however the performances of this materials are strongly affected by their supramolecular order achieved after deposition. In this research, the influence of some standard printing techniques on the electrical performances of conjugated polymers is evidenced in order to realise logic devices with these materials.

Page generated in 0.1084 seconds