• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyzing Mobile App Privacy Using Computation and Crowdsourcing

Amini, Shahriyar 01 May 2014 (has links)
Mobile apps can make use of the rich data and sensors available on smartphones to offer compelling services. However, the use of sensitive resources by apps is not always justified, which has led to new kinds of privacy risks and challenges. While it is possible for app market owners and third-parties to analyze the privacy-related behaviors of apps, present approaches are difficult and tedious. I present two iterations of the design, implementation, and evaluation of a system, Gort, which enables more efficient app analysis, by reducing the burden of instrumenting apps, making it easier to find potential privacy problems, and presenting sensitive behavior in context. Gort interacts with apps while instrumenting them to detect sensitive information transmissions. It then presents this information along with the associated app context to a crowd of users to obtain their expectations and comfort regarding the privacy implications of using the app. Gort also runs a set of heuristics on the app to flag potential privacy problems. Finally, Gort synthesizes the information obtained through its analysis and presents it in an interactive GUI, built specifically for privacy analysts. This work offers three distinct new advances over the state of the art. First, Gort uses a set of heuristics, elicited through interviews with 12 experts, to identify potential app privacy problems. Gort heuristics present high-level privacy problems instead of the overwhelming amount of information offered through existing tools. Second, Gort automatically interacts with apps by discovering and interacting with UI elements while instrumenting app behavior. This eliminates the need for analysts to manually interact with apps or to script interactions. Third, Gort uses crowdsourcing in a novel way to determine whether app privacy leaks are legitimate and desirable and raises red flags about potentially suspicious app behavior. While existing tools can detect privacy leaks, they cannot determine whether the privacy leaks are beneficial or desirable to the user. Gort was evaluated through two separate user studies. The experiences from building Gort and the insights from the user studies guide the creation of future systems, especially systems intended for the inspection and analysis of software.
2

Exploring the Design and Use of Forecasting Groupware Applications with an Augmented Shared Calendar

Tullio, Joseph 19 April 2005 (has links)
Changes in work, along with improvements in techniques to statistically model uncertainty, have resulted in a class of groupware tools able to forecast the activities and/or attentional state of their users. This thesis represents an exploration into the design, development, and use of one such system. I describe the design and development of a groupware calendar system called Augur that is augmented with the ability to predict the attendance of its users. Using Bayesian networks, Augur models the uncertain problem of event attendance, drawing inferences based on the attributes of calendar events as well as a history of attendance provided by each user. This system was deployed to an academic workgroup and studied over the course of a semester. To more deeply explore the social implications of Augur and systems like it, I conducted a structured privacy analysis of Augur to examine the vulnerabilities inherent in this type of forecasting groupware system. I present an architecture, user interface, and probabilistic model for Augur. This work also addresses the feasibility of such a system and the challenges faced when deploying it to an academic workgroup. I also report on an exploration of the systems use by individuals, its effects on communication within working relationships, and its effectiveness with respect to the presence of domestic calendars. Finally, I present a set of implications for the workplace social environment with the introduction of Augur. Specifically, I show how the integrity of predictions generated by Augur can have consequences for the privacy of users and their representations through the shared calendar. Overall, this thesis is presented as an early exploration into the potential for a new class of forecasting groupware applications. It offers guidance and lessons learned for both designers and researchers seeking to work in this area. It also presents a complete calendar application as an example for building and studying such systems.

Page generated in 0.0629 seconds