1 |
Convergência da convolução de probabilidades invariantes pelo deslocamentoUggioni, Bruno Brogni January 2016 (has links)
Essa tese foi inspirada no artigo [10] de Lindenstrauss et al. e remete ao trabalho fundamental de Furstenberg [5]. Sejam (Z=pZ)N o produto cartesiano unlilateral de in nitas cópias de Z=pZ e a função shift em (Z=pZ)N. / This thesis was inspired by the Lindenstrauss' article [10] and the fundamental work of Furstenberg [5]. Let (Z=pZ)N be the compact group which is the cartesian product of in nite copies of the nite group Z=pZ and be the shift function on (Z=pZ)N.
|
2 |
Convergência da convolução de probabilidades invariantes pelo deslocamentoUggioni, Bruno Brogni January 2016 (has links)
Essa tese foi inspirada no artigo [10] de Lindenstrauss et al. e remete ao trabalho fundamental de Furstenberg [5]. Sejam (Z=pZ)N o produto cartesiano unlilateral de in nitas cópias de Z=pZ e a função shift em (Z=pZ)N. / This thesis was inspired by the Lindenstrauss' article [10] and the fundamental work of Furstenberg [5]. Let (Z=pZ)N be the compact group which is the cartesian product of in nite copies of the nite group Z=pZ and be the shift function on (Z=pZ)N.
|
3 |
Convergência da convolução de probabilidades invariantes pelo deslocamentoUggioni, Bruno Brogni January 2016 (has links)
Essa tese foi inspirada no artigo [10] de Lindenstrauss et al. e remete ao trabalho fundamental de Furstenberg [5]. Sejam (Z=pZ)N o produto cartesiano unlilateral de in nitas cópias de Z=pZ e a função shift em (Z=pZ)N. / This thesis was inspired by the Lindenstrauss' article [10] and the fundamental work of Furstenberg [5]. Let (Z=pZ)N be the compact group which is the cartesian product of in nite copies of the nite group Z=pZ and be the shift function on (Z=pZ)N.
|
Page generated in 0.0852 seconds