1 |
Comparação de arquiteturas de redes neurais para sistemas de reconheceimento de padrões em narizes artificiaisFERREIRA, Aida Araújo January 2004 (has links)
Made available in DSpace on 2014-06-12T15:58:28Z (GMT). No. of bitstreams: 2
arquivo4572_1.pdf: 1149011 bytes, checksum: 92aae8f6f9b5145bfcecb94d96dbbc0b (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2004 / Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco / Um nariz artificial é um sistema modular composto de duas partes principais: um sistema
sensor, formado de elementos que detectam odores e um sistema de reconhecimento de padrões que
classifica os odores detectados. Redes neurais artificiais têm sido utilizadas como sistema de
reconhecimento de padrões para narizes artificiais e vêm apresentando resultados promissores.
Desde os anos 80, pesquisas para criação de narizes artificiais, que permitam detectar e
classificar odores, vapores e gases automaticamente, têm tido avanços significativos. Esses
equipamentos podem ser utilizados no monitoramento ambiental para controlar a qualidade do ar, na
área de saúde para realizar diagnóstico de doenças e nas indústrias de alimentos para o controle de
qualidade e o monitoramento de processos de produção.
Esta dissertação investiga a utilização de quatro técnicas diferentes de redes neurais para criação
de sistemas de reconhecimento de padrões em narizes artificiais. O trabalho está dividido em quatro
partes principais: (1) introdução aos narizes artificiais, (2) redes neurais artificiais para sistema de
reconhecimento de padrões, (3) métodos para medir o desempenho de sistemas de reconhecimento de
padrões e comparar os resultados e (4) estudo de caso.
Os dados utilizados para o estudo de caso, foram obtidos por um protótipo de nariz artificial
composto por um arranjo de oito sensores de polímeros condutores, expostos a nove tipos diferentes
de aguarrás. Foram adotadas as técnicas Multi-Layer Perceptron (MLP), Radial Base Function (RBF),
Probabilistic Neural Network (PNN) e Time Delay Neural Network (TDNN) para criar os sistemas de
reconhecimento de padrões. A técnica PNN foi investigada em detalhes, por dois motivos principais: esta técnica é indicada para realização de tarefas de classificação e seu treinamento é feito em apenas
um passo, o que torna a etapa de criação dessas redes muito rápida. Os resultados foram comparados
através dos valores dos erros médios de classificação utilizando o método estatístico de Teste de
Hipóteses.
As redes PNN correspondem a uma nova abordagem para criação de sistemas de
reconhecimento de padrões de odor. Estas redes tiveram um erro médio de classificação de 1.1574%
no conjunto de teste. Este foi o menor erro obtido entre todos os sistemas criados, entretanto mesmo
com o menor erro médio de classificação, os testes de hipóteses mostraram que os classificadores
criados com PNN não eram melhores do que os classificadores criados com a arquitetura RBF, que
obtiveram um erro médio de classificação de 1.3889%. A grande vantagem de criar classificadores com
a arquitetura PNN foi o pequeno tempo de treinamento dos mesmos, chegando a ser quase imediato.
Porém a quantidade de nodos na camada escondida foi muito grande, o que pode ser um problema,
caso o sistema criado deva ser utilizado em equipamentos com poucos recursos computacionais. Outra
vantagem de criar classificadores com redes PNN é relativa à quantidade reduzida de parâmetros que
devem ser analisados, neste caso apenas o parâmetro relativo à largura da função Gaussiana precisou ser
investigado
|
2 |
Applications of Soft Computing for Power-Quality Detection and Electric Machinery Fault DiagnosisWu, Chien-Hsien 20 November 2008 (has links)
With the deregulation of power industry and the market competition, stable and reliable power supply is a major concern of the independent system operator (ISO). Power-quality (PQ) study has become a more and more important subject lately. Harmonics, voltage swell, voltage sag, and power interruption could downgrade the service quality. In recent years, high speed railway (HSR) and massive rapid transit (MRT) system have been rapidly developed, with the applications of widespread semiconductor technologies in the auto-traction system. The harmonic distortion level worsens due to these increased uses of electronic equipment and non-linear loads. To ensure the PQ, power-quality disturbances (PQD) detection becomes important. A detection method with classification capability will be helpful for detecting disturbance locations and types.
Electric machinery fault diagnosis is another issue of considerable attentions from utilities and customers. ISO need to provide a high quality service to retain their customers. Fault diagnosis of turbine-generator has a great effect on the benefit of power plants. The generator fault not only damages the generator itself, but also causes outages and loss of profits. With high-temperature, high-pressure and factors such as thermal fatigues, many components may go wrong, which will not only lead to great economic loss, but sometimes a threat to social security. Therefore, it is necessary to detect generator faults and take immediate actions to cut the loss. Besides, induction motor plays a major role in a power system. For saving cost, it is important to run periodical inspections to detect incipient faults inside the motor. Preventive techniques for early detection can find out the incipient faults and avoid outages. This dissertation developed various soft computing (SC) algorithms for detection including power-quality disturbances (PQD), turbine-generator fault diagnosis, and induction motor fault diagnosis. The proposed SC algorithms included support vector machine (SVM), grey clustering analysis (GCA), and probabilistic neural network (PNN). Integrating the proposed diagnostic procedure and existing monitoring instruments, a well-monitored power system will be constructed without extra devices. Finally, all the methods in the dissertation give reasonable and practical estimation method. Compared with conventional method, the test results showed a high accuracy, good robustness, and a faster processing performance.
|
Page generated in 0.0785 seconds