• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 14
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 94
  • 94
  • 94
  • 15
  • 14
  • 14
  • 14
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Impact of Geometric Uncertainties on Dose Calculations for Intensity Modulated Radiation Therapy of Prostate Cancer

Jiang, Runqing January 2007 (has links)
IMRT uses non-uniform beam intensities within a radiation field to provide patient-specific dose shaping, resulting in a dose distribution that conforms tightly to the planning target volume (PTV). Unavoidable geometric uncertainty arising from patient repositioning and internal organ motion can lead to lower conformality index (CI), a decrease in tumor control probability (TCP) and an increase in normal tissue complication probability (NTCP). The CI of the IMRT plan depends heavily on steep dose gradients between the PTV and organ at risk (OAR). Geometric uncertainties reduce the planned dose gradients and result in a less steep or “blurred” dose gradient. The blurred dose gradients can be maximized by constraining the dose objective function in the static IMRT plan or by reducing geometric uncertainty during treatment with corrective verification imaging. Internal organ motion and setup error were evaluated simultaneously for 118 individual patients with implanted fiducials and MV electronic portal imaging (EPI). The Gaussian PDF is patient specific and group standard deviation (SD) should not be used for accurate treatment planning for individual patients. Frequent verification imaging should be employed in situations where geometric uncertainties are expected. The dose distribution including geometric uncertainties was determined from integration of the convolution of the static dose gradient with the PDF. Local maximum dose gradient (LMDG) was determined via optimization of dose objective function by manually adjusting DVH control points or selecting beam numbers and directions during IMRT treatment planning. EUDf is a useful QA parameter for interpreting the biological impact of geometric uncertainties on the static dose distribution. The EUDf has been used as the basis for the time-course NTCP evaluation in the thesis. Relative NTCP values are useful for comparative QA checking by normalizing known complications (e.g. reported in the RTOG studies) to specific DVH control points. For prostate cancer patients, rectal complications were evaluated from specific RTOG clinical trials and detailed evaluation of the treatment techniques. Treatment plans that did not meet DVH constraints represented additional complication risk. Geometric uncertainties improved or worsened rectal NTCP depending on individual internal organ motion within patient.
32

Impact of Geometric Uncertainties on Dose Calculations for Intensity Modulated Radiation Therapy of Prostate Cancer

Jiang, Runqing January 2007 (has links)
IMRT uses non-uniform beam intensities within a radiation field to provide patient-specific dose shaping, resulting in a dose distribution that conforms tightly to the planning target volume (PTV). Unavoidable geometric uncertainty arising from patient repositioning and internal organ motion can lead to lower conformality index (CI), a decrease in tumor control probability (TCP) and an increase in normal tissue complication probability (NTCP). The CI of the IMRT plan depends heavily on steep dose gradients between the PTV and organ at risk (OAR). Geometric uncertainties reduce the planned dose gradients and result in a less steep or “blurred” dose gradient. The blurred dose gradients can be maximized by constraining the dose objective function in the static IMRT plan or by reducing geometric uncertainty during treatment with corrective verification imaging. Internal organ motion and setup error were evaluated simultaneously for 118 individual patients with implanted fiducials and MV electronic portal imaging (EPI). The Gaussian PDF is patient specific and group standard deviation (SD) should not be used for accurate treatment planning for individual patients. Frequent verification imaging should be employed in situations where geometric uncertainties are expected. The dose distribution including geometric uncertainties was determined from integration of the convolution of the static dose gradient with the PDF. Local maximum dose gradient (LMDG) was determined via optimization of dose objective function by manually adjusting DVH control points or selecting beam numbers and directions during IMRT treatment planning. EUDf is a useful QA parameter for interpreting the biological impact of geometric uncertainties on the static dose distribution. The EUDf has been used as the basis for the time-course NTCP evaluation in the thesis. Relative NTCP values are useful for comparative QA checking by normalizing known complications (e.g. reported in the RTOG studies) to specific DVH control points. For prostate cancer patients, rectal complications were evaluated from specific RTOG clinical trials and detailed evaluation of the treatment techniques. Treatment plans that did not meet DVH constraints represented additional complication risk. Geometric uncertainties improved or worsened rectal NTCP depending on individual internal organ motion within patient.
33

Dynamic Economic Dispatch Incorporating Renewable Energy with Carbon Trading

Hsu, Lee-Yang 19 June 2012 (has links)
Carbon dioxide (CO2) is the most important component of Greenhouse Gas (GHG) that causes global warming and sea-level rising. Thermal power plants dominate electric power generation in the world, and has been reported to be the major contributor of CO2 emission. To prevent the related global warming caused by GHG emission, carbon quota trading is implemented and becomes a gradually arising market. This thesis proposed a research focused on the relationship between the carbon trading scheme and dynamic economic dispatch (DED) problem for the public utility. A model of the carbon trading market was investigated and introduced into DED problem incorporating wind and solar power plant. A refined particle swarm optimization (PSO) algorithm, PSO with time-varying acceleration coefficients (PSO-TVAC), is applied to determine the DED strategy with the incorporation of independent power providers (IPPs) and green power plant. The model of the carbon trading was considered in the DED problem. Carbon reduction is treated as the inner-cost of utility, and the fictitious carbon quotas can be resold to the market, while the energy shortage can be satisfied by purchasing quotas from the market. In order to avoid premature convergence of the original PSO, the PSO-TVAC method is introduced to improve the searching efficiency.
34

Evaluation probabiliste du risque lié à l'exposition à des aflatoxines et des fumonisines dû à la consommation de tortillas de maïs à la ville de Veracruz / Evaluación probabilistica de riesgo por exposición a aflatoxinas y fumonisinas por consumo de tortillas en la ciudad de Veracruz / Probabilistic risk assessment for aflatoxins and fumonisins exposition through the consumption of maize tortillas in Veracruz City, Mexico

Wall Martinez, Hiram Alejandro 20 October 2016 (has links)
Un des dangers chimiques les plus importants relevés par l'OMS concerne la contamination des céréales par les mycotoxines et notamment les aflatoxines et les fumonisines. La réglementation recommande des contaminations maximales d'aflatoxines dans les céréales inférieures à 20 mg/kg ; cependant on relève couramment des taux supérieurs à 200 mg/kg dans le maïs au Mexique. Bien qu'il ait été évalué que le processus de nixtamalisation détruit plus de 90 % des fumonisines et de 80 à 95 % des aflatoxines, le taux résiduel peut encore être élevé : certaines publications rapportent des concentrations jusqu'à 100 mg/kg dans les tortillas, ce qui représente un risque avéré vue la grande consommation de tortillas au Mexique (325g/j). Le JECFA (2001) a établi une dose maximale acceptable de 2μg/kg pc/j pour la fumonisine et recommande de réduire l'exposition aux aflatoxines au plus faible niveau possible en considérant que le seuil de 1 ng/kg pc/j ne devrait pas être atteint. Au cours de cette thèse 3 enquêtes aléatoires et représentatives ont été menées dans 40 tortillerias de la ville de Veracruz. La consommation de maïs de la population a été évaluée à partir d'un questionnaire de consommation. L'analyse des mycotoxines a été réalisée par HPLC-FD par utilisation de colonnes à immunoaffinité selon la réglementation européenne (CIRAD-Montpellier). L'analyse des données obtenues a été effectuée selon une méthode probabiliste permettant de construire une fonction de distribution de probabilités à partir de la méthode de Monte Carlo (UBO). La représentativité de la population a été validée à partir d'évaluation de quotas de population après échantillonnage aléatoire initial. La contamination des tortillas a été mesurée à 0.54-1.96 mg/kg pour les aflatoxines et à 65-136 mg/kg pour les fumonisines. La consommation moyenne de tortillas a été mesurée à 148 g de maïs par jour. L'exposition de la population aux aflatoxines apparaît alors comprise entre 0,94 et 3,14 ng/kg pc/j et celle aux fumonisines entre 146 et 315 ng/kg pc/j. Les échantillons les plus contaminés proviennent des tortillerias réalisant elles-mêmes leur procédure de nixtamalisation. L'analyse des résultats montre que 60 % de la population de Veracruz serait à risque selon les préconisations du JECFA. L'exposition aux fumonisines atteint 5 % de la dose maximale acceptable, du fait d'une relativement faible contamination du maïs à cette mycotoxine. Les résultats montrent donc un risque sanitaire pour la population de la ville de Veracruz. Une extension de ce travail à la totalité de l’Etat de Veracruz, incluant la population rurale, devrait être menée du fait du risque probablement accru de cette dernière catégorie de population en lien avec sa plus forte consommation de maïs. / One of the chemical hazards that WHO has reported more frequently is cereals contamination with mycotoxins, mainly aflatoxins and fumonisins. NOM-188-SSA1-2002 establishes that aflatoxin concentration in grain should not exceed 20 mg kg-1 ; however, there are reported concentrations > 200 mg kg-1 in maize. Although it has been documented that nixtamalizacion removes more than 90% of fumonisins and between 80 and 95% of aflatoxins, the residual amount could be important, finding reports concentrations higher than 100 mg kg-1 of aflatoxin in tortilla, representing a risk due to the high consumption of tortillas in Mexico (325 g d-1). The JECFA (2001) establishes a maximum intake of 2 mg kg-1 pc d-1 for fumonisin and aflatoxin recommends reducing “as low as reasonably achievable” levels. 3 random and representative sampling in Veracruz city, each in 40 tortillerias, were made. Corn intake and weight of the population were estimated using a consumption questionnaire. Mycotoxins analysis were performed by HPLC-FD using immunoaffinity columns according to European standard UNE-EN ISO 14123 : 2008 for aflatoxins and UNE-EN 13585 : 2002 for fumonisin in the CIRAD (Montpellier, France). Statistical analysis were performed under a probabilistic approach in collaboration with the University of Bretagne Occidentale (Brest, France), building probability density function (PDF) and using the Monte Carlo method. PDF parameters of the weight of the population was 74.15kg for men (which coincides with reported by CANAIVE) and 65.83kg for women ; the pollution aflatoxin tortilla was 0.54 – 1.96mg kg-1 and fumonisin from 65.46 – 136.00mg kg-1 ; the tortilla consumption was 148.3g of corn per person per day ; the daily intake of aflatoxins was 0.94 – 3.14ng kg-1 bw d-1 and fumonisin of 146.24 – 314.99ng kg-1 bw d-1. Samples with higher aflatoxin contamination came from tortillerias that make the nixtamalization in situ. In assessing exposure it was found that up to 60% of the population could be consuming more than the recommended by JECFA (2001) for aflatoxin dose (1ng kg-1 bw d-1). Exposure to fumonisins intake was < 5% due to low contamination by these mycotoxins. The results suggest that the population of the city of Veracruz could be in food risk by eating contaminated corn tortillas AFT. It is advisable to extend this study in rural communities, where risk factors could increase.
35

A Probabilistic Cost to Benefit Assessment of a Next Generation Electric Power Distribution System

January 2016 (has links)
abstract: This thesis provides a cost to benefit assessment of the proposed next generation distribution system, the Future Renewable Electric Energy Distribution Management (FREEDM) system. In this thesis, a probabilistic study is conducted to determine the payback period for an investment made in the FREEDM distribution system. The stochastic study will help in performing a detailed analysis in estimating the probability density function and statistics associated with the payback period. This thesis also identifies several parameters associated with the FREEDM system, which are used in the cost benefit study to evaluate the investment and several direct and indirect benefits. Different topologies are selected to represent the FREEDM test bed. Considering the cost of high speed fault isolation devices, the topology design is selected based on the minimum number of fault isolation devices constrained by enhanced reliability. A case study is also performed to assess the economic impact of energy storage devices in the solid state transformers so that the fault isolation devices may be replaced by conventional circuit breakers. A reliability study is conducted on the FREEDM distribution system to examine the customer centric reliability index, System Average Interruption Frequency Index (SAIFI). It is observed that the SAIFI was close to 0.125 for the FREEDM distribution system. In addition, a comparison study is performed based on the SAIFI for a representative U.S. distribution system and the FREEDM distribution system. The payback period is also determined by adopting a theoretical approach and the results are compared with the Monte Carlo simulation outcomes to understand the variation in the payback period. It is observed that the payback period is close to 60 years but if an annual rebate is considered, the payback period reduces to 20 years. This shows that the FREEDM system has a significant potential which cannot be overlooked. Several direct and indirect benefits arising from the FREEDM system have also been discussed in this thesis. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2016
36

Mobile Application Development with Image Applications Using Xamarin

GAJJELA, VENKATA SARATH, DUPATI, SURYA DEEPTHI January 2018 (has links)
Image enhancement improves an image appearance by increasing dominance of some features or by decreasing ambiguity between different regions of the image. Image enhancement techniques have been widely used in many applications of image processing where the subjective quality of images is important for human interpretation. In many cases, the images have lack of clarity and have some effects on images due to fog, low light and other daylight effects exist. So, the images which have these scenarios should be enhanced and made clear to recognize the objects clearly. Histogram-based image enhancement technique is mainly based on equalizing the histogram of the image and increasing the dynamic range corresponding to the image. The Histogram equalization algorithm was performed and tested using different images facing the low light, fog images and colour contrast and succeeded in obtaining enhanced images. This technique is implemented by averaging the histogram values as the probability density function. Initially, we have worked with the MATLAB code on Histogram Equalization and made changes to implement an Application Program Interface i.e., API using Xamarin software. The mobile application developed using Xamarin software works efficiently and has less execution time when compared to the application developed in Android Studio. Debugging of the application is successfully done in both Android and IOS versions. The focus of this thesis is to develop a mobile application on Image enhancement using Xamarin on low light, foggy images.
37

Currents Induced on Wired I.T. Networks by Randomly Distributed Mobile Phones - A Computational Study

Excell, Peter S., Abd-Alhameed, Raed, Vaul, John A. January 2006 (has links)
No / The probability density and exceedance probability functions of the induced currents in a screened cable connecting two enclosures, resulting from the close. presence of single and multiple mobile phones working at 900 MHz, are investigated. The analysis of the problem is undertaken using the Method of Moments, but due to weak coupling, the impedance matrix was modified to reduce the memory and time requirements for the problem, to enable it to be executed multiple times. The empirical probability distribution functions (PDFs) and exceedance probabilities for the induced currents are presented. The form of the PDFs is seen to be quite well approximated by a log-normal distribution for a single source and by a Weibull distribution for multiple sources
38

Stochastic distribution tracking control for stochastic non-linear systems via probability density function vectorisation

Liu, Y., Zhang, Qichun, Yue, H. 08 February 2022 (has links)
Yes / This paper presents a new control strategy for stochastic distribution shape tracking regarding non-Gaussian stochastic non-linear systems. The objective can be summarised as adjusting the probability density function (PDF) of the system output to any given desired distribution. In order to achieve this objective, the system output PDF has first been formulated analytically, which is time-variant. Then, the PDF vectorisation has been implemented to simplify the model description. Using the vector-based representation, the system identification and control design have been performed to achieve the PDF tracking. In practice, the PDF evolution is difficult to implement in real-time, thus a data-driven extension has also been discussed in this paper, where the vector-based model can be obtained using kernel density estimation (KDE) with the real-time data. Furthermore, the stability of the presented control design has been analysed, which is validated by a numerical example. As an extension, the multi-output stochastic systems have also been discussed for joint PDF tracking using the proposed algorithm, and the perspectives of advanced controller have been discussed. The main contribution of this paper is to propose: (1) a new sampling-based PDF transformation to reduce the modelling complexity, (2) a data-driven approach for online implementation without model pre-training, and (3) a feasible framework to integrate the existing control methods. / This paper is partly supported by National Science Foundation of China under Grants (61603262 and 62073226), Liaoning Province Natural Science Joint Foundation in Key Areas (2019- KF-03-08), Natural Science Foundation of Liaoning Province (20180550418), Liaoning BaiQianWan Talents Program, i5 Intelligent Manufacturing Institute Fund of Shenyang Institute of Technology (i5201701), Central Government Guides Local Science and Technology Development Funds of Liaoning Province (2021JH6/10500137).
39

The Effect of Receiver Nonlinearity and Nonlinearity Induced Interference on the Performance of Amplitude Modulated Signals

Moore, Natalie 22 August 2018 (has links)
All wireless receivers have some degree of nonlinearity that can negatively impact performance. Two major effects from this nonlinearity are power compression, which leads to amplitude and phase distortions in the received signal, and desensitization caused by a high powered interfering signal at an adjacent channel. As the RF spectrum becomes more crowded, the interference caused by these adjacent signals will become a more significant problem for receiver design. Therefore, having bit and symbol error rate expressions that take the receiver nonlinearity into account will allow for determining the linearity requirements of a receiver. This thesis examines the modeling of the probability density functions of M-PAM and M-QAM signals through an AWGN channel taking into account the impact of receiver nonlinearity. A change of variables technique is used to provide a relationship between the pdf of these signals with a linear receiver and the pdf with a nonlinear receiver. Additionally, theoretical bit and symbol error rates are derived from the pdf expressions. Finally, this approach is extended by deriving pdf and error rate expressions for these signals when nearby blocking signals cause desensitization of the signal of interest. Matlab simulation shows that the derived expressions for a nonlinear receiver have the same accuracy as the accepted expressions for linear receivers. / Master of Science / All wireless receivers have some amount of nonlinearity that can distort a received signal and impact performance. For amplitude modulated signals, the power compression caused by the nonlinear receiver will cause distortions in the amplitude and phase of the received signal. Additionally, a high powered interfering signal at a close frequency can decrease the gain and distort the received signal. This thesis examines how the probability density of an amplitude modulated signal with a nonlinear receiver can be modeled for both of these situations. These theoretical probability density functions are used to derive theoretical error rate expressions for the signals both with and without the adjacent channel interference. Simulations in Matlab show that the accuracy of these derived expressions is similar to the accuracies of the linear receiver expressions. These derived expressions will be able to remove the need for time consuming simulation when designing receivers for wireless systems.
40

Computational methods for random differential equations: probability density function and estimation of the parameters

Calatayud Gregori, Julia 05 March 2020 (has links)
[EN] Mathematical models based on deterministic differential equations do not take into account the inherent uncertainty of the physical phenomenon (in a wide sense) under study. In addition, inaccuracies in the collected data often arise due to errors in the measurements. It thus becomes necessary to treat the input parameters of the model as random quantities, in the form of random variables or stochastic processes. This gives rise to the study of random ordinary and partial differential equations. The computation of the probability density function of the stochastic solution is important for uncertainty quantification of the model output. Although such computation is a difficult objective in general, certain stochastic expansions for the model coefficients allow faithful representations for the stochastic solution, which permits approximating its density function. In this regard, Karhunen-Loève and generalized polynomial chaos expansions become powerful tools for the density approximation. Also, methods based on discretizations from finite difference numerical schemes permit approximating the stochastic solution, therefore its probability density function. The main part of this dissertation aims at approximating the probability density function of important mathematical models with uncertainties in their formulation. Specifically, in this thesis we study, in the stochastic sense, the following models that arise in different scientific areas: in Physics, the model for the damped pendulum; in Biology and Epidemiology, the models for logistic growth and Bertalanffy, as well as epidemiological models; and in Thermodynamics, the heat partial differential equation. We rely on Karhunen-Loève and generalized polynomial chaos expansions and on finite difference schemes for the density approximation of the solution. These techniques are only applicable when we have a forward model in which the input parameters have certain probability distributions already set. When the model coefficients are estimated from collected data, we have an inverse problem. The Bayesian inference approach allows estimating the probability distribution of the model parameters from their prior probability distribution and the likelihood of the data. Uncertainty quantification for the model output is then carried out using the posterior predictive distribution. In this regard, the last part of the thesis shows the estimation of the distributions of the model parameters from experimental data on bacteria growth. To do so, a hybrid method that combines Bayesian parameter estimation and generalized polynomial chaos expansions is used. / [ES] Los modelos matemáticos basados en ecuaciones diferenciales deterministas no tienen en cuenta la incertidumbre inherente del fenómeno físico (en un sentido amplio) bajo estudio. Además, a menudo se producen inexactitudes en los datos recopilados debido a errores en las mediciones. Por lo tanto, es necesario tratar los parámetros de entrada del modelo como cantidades aleatorias, en forma de variables aleatorias o procesos estocásticos. Esto da lugar al estudio de las ecuaciones diferenciales aleatorias. El cálculo de la función de densidad de probabilidad de la solución estocástica es importante en la cuantificación de la incertidumbre de la respuesta del modelo. Aunque dicho cálculo es un objetivo difícil en general, ciertas expansiones estocásticas para los coeficientes del modelo dan lugar a representaciones fieles de la solución estocástica, lo que permite aproximar su función de densidad. En este sentido, las expansiones de Karhunen-Loève y de caos polinomial generalizado constituyen herramientas para dicha aproximación de la densidad. Además, los métodos basados en discretizaciones de esquemas numéricos de diferencias finitas permiten aproximar la solución estocástica, por lo tanto, su función de densidad de probabilidad. La parte principal de esta disertación tiene como objetivo aproximar la función de densidad de probabilidad de modelos matemáticos importantes con incertidumbre en su formulación. Concretamente, en esta memoria se estudian, en un sentido estocástico, los siguientes modelos que aparecen en diferentes áreas científicas: en Física, el modelo del péndulo amortiguado; en Biología y Epidemiología, los modelos de crecimiento logístico y de Bertalanffy, así como modelos de tipo epidemiológico; y en Termodinámica, la ecuación en derivadas parciales del calor. Utilizamos expansiones de Karhunen-Loève y de caos polinomial generalizado y esquemas de diferencias finitas para la aproximación de la densidad de la solución. Estas técnicas solo son aplicables cuando tenemos un modelo directo en el que los parámetros de entrada ya tienen determinadas distribuciones de probabilidad establecidas. Cuando los coeficientes del modelo se estiman a partir de los datos recopilados, tenemos un problema inverso. El enfoque de inferencia Bayesiana permite estimar la distribución de probabilidad de los parámetros del modelo a partir de su distribución de probabilidad previa y la verosimilitud de los datos. La cuantificación de la incertidumbre para la respuesta del modelo se lleva a cabo utilizando la distribución predictiva a posteriori. En este sentido, la última parte de la tesis muestra la estimación de las distribuciones de los parámetros del modelo a partir de datos experimentales sobre el crecimiento de bacterias. Para hacerlo, se utiliza un método híbrido que combina la estimación de parámetros Bayesianos y los desarrollos de caos polinomial generalizado. / [CA] Els models matemàtics basats en equacions diferencials deterministes no tenen en compte la incertesa inherent al fenomen físic (en un sentit ampli) sota estudi. A més a més, sovint es produeixen inexactituds en les dades recollides a causa d'errors de mesurament. Es fa així necessari tractar els paràmetres d'entrada del model com a quantitats aleatòries, en forma de variables aleatòries o processos estocàstics. Açò dóna lloc a l'estudi de les equacions diferencials aleatòries. El càlcul de la funció de densitat de probabilitat de la solució estocàstica és important per a quantificar la incertesa de la sortida del model. Tot i que, en general, aquest càlcul és un objectiu difícil d'assolir, certes expansions estocàstiques dels coeficients del model donen lloc a representacions fidels de la solució estocàstica, el que permet aproximar la seua funció de densitat. En aquest sentit, les expansions de Karhunen-Loève i de caos polinomial generalitzat esdevenen eines per a l'esmentada aproximació de la densitat. A més a més, els mètodes basats en discretitzacions mitjançant esquemes numèrics de diferències finites permeten aproximar la solució estocàstica, per tant la seua funció de densitat de probabilitat. La part principal d'aquesta dissertació té com a objectiu aproximar la funció de densitat de probabilitat d'importants models matemàtics amb incerteses en la seua formulació. Concretament, en aquesta memòria s'estudien, en un sentit estocàstic, els següents models que apareixen en diferents àrees científiques: en Física, el model del pèndol amortit; en Biologia i Epidemiologia, els models de creixement logístic i de Bertalanffy, així com models de tipus epidemiològic; i en Termodinàmica, l'equació en derivades parcials de la calor. Per a l'aproximació de la densitat de la solució, ens basem en expansions de Karhunen-Loève i de caos polinomial generalitzat i en esquemes de diferències finites. Aquestes tècniques només són aplicables quan tenim un model cap avant en què els paràmetres d'entrada tenen ja determinades distribucions de probabilitat. Quan els coeficients del model s'estimen a partir de les dades recollides, tenim un problema invers. L'enfocament de la inferència Bayesiana permet estimar la distribució de probabilitat dels paràmetres del model a partir de la seua distribució de probabilitat prèvia i la versemblança de les dades. La quantificació de la incertesa per a la resposta del model es fa mitjançant la distribució predictiva a posteriori. En aquest sentit, l'última part de la tesi mostra l'estimació de les distribucions dels paràmetres del model a partir de dades experimentals sobre el creixement de bacteris. Per a fer-ho, s'utilitza un mètode híbrid que combina l'estimació de paràmetres Bayesiana i els desenvolupaments de caos polinomial generalitzat. / This work has been supported by the Spanish Ministerio de Economía y Competitividad grant MTM2017–89664–P. / Calatayud Gregori, J. (2020). Computational methods for random differential equations: probability density function and estimation of the parameters [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/138396 / Premios Extraordinarios de tesis doctorales

Page generated in 0.122 seconds