• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seismic Analysis of Steel Wind Turbine Towers in the Canadian Environment

Nuta, Elena 06 April 2010 (has links)
The seismic response of steel monopole wind turbine towers is investigated and their risk is assessed in the Canadian seismic environment. This topic is of concern as wind turbines are increasingly being installed in seismic areas and design codes do not clearly address this aspect of design. An implicit finite element model of a 1.65MW tower was developed and validated. Incremental dynamic analysis was carried out to evaluate its behaviour under seismic excitation, to define several damage states, and to develop a framework for determining its probability of damage. This framework was implemented in two Canadian locations, where the risk was found to be low for the seismic hazard level prescribed for buildings. However, the design of wind turbine towers is subject to change, as is the design spectrum. Thus, a methodology is outlined to thoroughly investigate the probability of reaching predetermined damage states under seismic loading for future considerations.
2

Seismic Analysis of Steel Wind Turbine Towers in the Canadian Environment

Nuta, Elena 06 April 2010 (has links)
The seismic response of steel monopole wind turbine towers is investigated and their risk is assessed in the Canadian seismic environment. This topic is of concern as wind turbines are increasingly being installed in seismic areas and design codes do not clearly address this aspect of design. An implicit finite element model of a 1.65MW tower was developed and validated. Incremental dynamic analysis was carried out to evaluate its behaviour under seismic excitation, to define several damage states, and to develop a framework for determining its probability of damage. This framework was implemented in two Canadian locations, where the risk was found to be low for the seismic hazard level prescribed for buildings. However, the design of wind turbine towers is subject to change, as is the design spectrum. Thus, a methodology is outlined to thoroughly investigate the probability of reaching predetermined damage states under seismic loading for future considerations.

Page generated in 0.0662 seconds