Spelling suggestions: "subject:"problème dde weyl"" "subject:"problème dde heyl""
1 |
Bases orthonormales et calcul ombral en analyse p-adiqueTangara, Fana 04 September 2006 (has links) (PDF)
Soient p un nombre premier, Zp l'anneau des entiers p-adiques, Qp le corps des nombres p-adiques et K un sur-corps valué complet de Qp. Soit C(Zp,K) l'algèbre de Banach des fonctions continues de Zp dans K munie de la norme de la convergence uniforme et soit q appartenant à K tel que Iq-1I<1. K. Conrad établit un q-analogue de la base de Mahler. A l'aide de ce dévelopement, utilisant les techniques de calcul ombral, nous établissons une correspondance bijective, d'un côté entre une classe de q-bases orthonormales de C(Zp,K) et une classe d'opérateurs commutant avec l'opérateur de translation r1 tel que r1(f)(x)=f(x+1) et une autre entre une classe de q-bases orthogonales de C(Zp,K) et une classe d'opérateurs commutant avec la q-dérivation de Jackson. Nous obtenons une réalisation du plan quantique et de l'algèbre de Weyl à deux générareurs sous forme concrète d'algèbres d'opérateurs. Nous faisons quelques calculs de normes de ces opérateurs et nous exhibons une famille orthogonale pour l'algèbre de Weyl quantique. Nous obtenons des conditions nécessaires et suffisantes sur les coefficients du développement de Conrad pour qu'une fonction continue soit strictement différentiable, d'abord lorsque q est non racine de l'unité, ensuite lorsque q est une racine primitive de l'unité d'ordre une puissance pN de p. Comme application nous donnons une q-version de l'intégrale de Volkenborn
|
Page generated in 0.0541 seconds