Spelling suggestions: "subject:"procesos gaussiano"" "subject:"procesos gaussianas""
1 |
Un enfoque moderno para la estimación espectral probabilísticaAraya Hernández, Lerko Caleb January 2019 (has links)
Tesis para optar al grado de Magíster en Ciencias de la Ingeniería, Mención Eléctrica / Memoria para optar al Título de Ingeniero Civil Eléctrico / El presente trabajo propone y estudia dos métodos bayesianos para abordar el problema de estimación espectral: uno paramétrico y uno no-paramétrico. En esta ocasión se abordará una variante del problema de estimación espectral, en que las muestras u observaciones están en el dominio de las frecuencias, similar al problema de interferometría. Actualmente, Chile es una de las grandes potencias en astronomía, siendo el norte de Chile el hogar del interferómetro más grande del mundo, llamado Atacama Large Millimeter/submillimeter Array (ALMA).
El desarrollo metodológico de este trabajo consistió en modelar el dominio temporal (o espacial) y luego -informalmente- pasar el modelo temporal a través de la transformada de Fourier. Para el modelamiento se utiliza inferencia bayesiana, puesto que esta es un marco de trabajo que promete incorporar la incertidumbre natural de los problemas en el mundo real. De esta manera, el enfoque probabilístico que nos brinda la inferencia bayesiana nos permitirá establecer intervalos de confianza y caracterizar la incertidumbre de la reconstrucción.
Los resultados experimentales están divididos en dos partes. La primera, está relacionada con la validación de los métodos, mientras que la segunda consiste en probar los modelos en imágenes reales. La etapa de validación a su vez se dividió en otros dos experimentos: El primer experimento es un caso unidimensional, en el que se probó el desempeño del método para realizar una regresión de una señal temporal la cual cumple todos las hipótesis propuestas en cada método; el segundo experimento consiste en realizar una regresión de una señal bidimensional, es decir, una imagen que cumpla con las hipótesis de cada método. El propósito de esto es realizar una validación en un escenario sintético y completamente controlado, en los cuales se pueda evaluar correctamente el desempeño de los métodos.
Los resultados para cada método son prometedores, entre los cuales se puede observar la correcta validación de ambos métodos, la robustez de los métodos para imágenes reales y la facilidad de extensión para ocupar los métodos en otros problemas o incluso con muestras en el dominio temporal. En ese sentido, el trabajo a futuro puede alcanzar una gran profundidad y el pulimento de estos métodos se puede entender tanto como la aplicación particular de estos métodos en un problema o el desarrollo de nueva teoría para la sofisticación de los métodos. / CONICYT N 22171830, FONDECYT-Iniciación 1171165 y CONICYT-PIA AFB-170001
|
2 |
Modeling Uncertainty for Reliable Probabilistic Modeling in Deep Learning and BeyondMaroñas Molano, Juan 28 February 2022 (has links)
[ES] Esta tesis se enmarca en la intersección entre las técnicas modernas de Machine Learning, como las Redes Neuronales Profundas, y el modelado probabilístico confiable. En muchas aplicaciones, no solo nos importa la predicción hecha por un modelo (por ejemplo esta imagen de pulmón presenta cáncer) sino también la confianza que tiene el modelo para hacer esta predicción (por ejemplo esta imagen de pulmón presenta cáncer con 67% probabilidad). En tales aplicaciones, el modelo ayuda al tomador de decisiones (en este caso un médico) a tomar la decisión final. Como consecuencia, es necesario que las probabilidades proporcionadas por un modelo reflejen las proporciones reales presentes en el conjunto al que se ha asignado dichas probabilidades; de lo contrario, el modelo es inútil en la práctica. Cuando esto sucede, decimos que un modelo está perfectamente calibrado.
En esta tesis se exploran tres vias para proveer modelos más calibrados. Primero se muestra como calibrar modelos de manera implicita, que son descalibrados por técnicas de aumentación de datos. Se introduce una función de coste que resuelve esta descalibración tomando como partida las ideas derivadas de la toma de decisiones con la regla de Bayes. Segundo, se muestra como calibrar modelos utilizando una etapa de post calibración implementada con una red neuronal Bayesiana. Finalmente, y en base a las limitaciones estudiadas en la red neuronal Bayesiana, que hipotetizamos que se basan en un prior mispecificado, se introduce un nuevo proceso estocástico que sirve como distribución a priori en un problema de inferencia Bayesiana. / [CA] Aquesta tesi s'emmarca en la intersecció entre les tècniques modernes de Machine Learning, com ara les Xarxes Neuronals Profundes, i el modelatge probabilístic fiable. En moltes aplicacions, no només ens importa la predicció feta per un model (per ejemplem aquesta imatge de pulmó presenta càncer) sinó també la confiança que té el model per fer aquesta predicció (per exemple aquesta imatge de pulmó presenta càncer amb 67% probabilitat). En aquestes aplicacions, el model ajuda el prenedor de decisions (en aquest cas un metge) a prendre la decisió final. Com a conseqüència, cal que les probabilitats proporcionades per un model reflecteixin les proporcions reals presents en el conjunt a què s'han assignat aquestes probabilitats; altrament, el model és inútil a la pràctica. Quan això passa, diem que un model està perfectament calibrat.
En aquesta tesi s'exploren tres vies per proveir models més calibrats. Primer es mostra com calibrar models de manera implícita, que són descalibrats per tècniques d'augmentació de dades. S'introdueix una funció de cost que resol aquesta descalibració prenent com a partida les idees derivades de la presa de decisions amb la regla de Bayes. Segon, es mostra com calibrar models utilitzant una etapa de post calibratge implementada amb una xarxa neuronal Bayesiana. Finalment, i segons les limitacions estudiades a la xarxa neuronal Bayesiana, que es basen en un prior mispecificat, s'introdueix un nou procés estocàstic que serveix com a distribució a priori en un problema d'inferència Bayesiana. / [EN] This thesis is framed at the intersection between modern Machine Learning techniques, such as Deep Neural Networks, and reliable probabilistic modeling. In many machine learning applications, we do not only care about the prediction made by a model (e.g. this lung image presents cancer) but also in how confident is the model in making this prediction (e.g. this lung image presents cancer with 67% probability). In such applications, the model assists the decision-maker (in this case a doctor) towards making the final decision. As a consequence, one needs that the probabilities provided by a model reflects the true underlying set of outcomes, otherwise the model is useless in practice. When this happens, we say that a model is perfectly calibrated.
In this thesis three ways are explored to provide more calibrated models. First, it is shown how to calibrate models implicitly, which are decalibrated by data augmentation techniques. A cost function is introduced that solves this decalibration taking as a starting point the ideas derived from decision making with Bayes' rule. Second, it shows how to calibrate models using a post-calibration stage implemented with a Bayesian neural network. Finally, and based on the limitations studied in the Bayesian neural network, which we hypothesize that came from a mispecified prior, a new stochastic process is introduced that serves as a priori distribution in a Bayesian inference problem. / Maroñas Molano, J. (2022). Modeling Uncertainty for Reliable Probabilistic Modeling in Deep Learning and Beyond [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181582
|
3 |
Colorimetric and spectral analysis of rock art by means of the characterization of digital sensorsMolada Tebar, Adolfo 01 February 2021 (has links)
Tesis por compendio / [ES] Las labores de documentación de arte rupestre son arduas y delicadas, donde el color desempeña un papel fundamental, proporcionando información vital a nivel descriptivo, técnico y cuantitativo . Tradicionalmente los métodos de documentación en arqueología quedaban restringidos a procedimientos estrictamente subjetivos. Sin embargo, esta metodología conlleva limitaciones prácticas y técnicas, afectando a los resultados obtenidos en la determinación del color. El empleo combinado de técnicas geomáticas, como la fotogrametría o el láser escáner, junto con técnicas de procesamiento de imágenes digitales, ha supuesto un notable avance. El problema es que, aunque las imágenes digitales permiten capturar el color de forma rápida, sencilla, y no invasiva, los datos RGB registrados por la cámara no tienen un sentido colorimétrico riguroso. Se requiere la aplicación de un proceso riguroso de tranformación que permita obtener datos fidedignos del color a través de imágenes digitales.
En esta tesis se propone una solución científica novedosa y de vanguardia, en la que se persigue integrar el análisis espectrofotométrico y colorimétrico como complemento a técnicas fotogramétricas que permitan una mejora en la identificación del color y representación de pigmentos con máxima fiabilidad en levantamientos, modelos y reconstrucciones tridimensionales (3D). La metodología propuesta se basa en la caracterización colorimétrica de sensores digitales, que es de novel aplicación en pinturas rupestres. La caracterización pretende obtener las ecuaciones de transformación entre los datos de color registrados por la cámara, dependientes del dispositivo, y espacios de color independientes, de base física, como los establecidos por la Commission Internationale de l'Éclairage (CIE).
Para el tratamiento de datos colorimétricos y espectrales se requiere disponer de un software de características técnicas muy específicas. Aunque existe software comercial, lo cierto es que realizan por separado el tratamiento digital de imágenes y las operaciones colorimétricas. No existe software que integre ambas, ni que además permita llevar a cabo la caracterización. Como aspecto fundamental, presentamos en esta tesis el software propio desarrollado, denominado pyColourimetry, siguiendo las recomendaciones publicadas por la CIE, de código abierto, y adaptado al flujo metodológico propuesto, de modo que facilite la independencia y el progreso científico sin ataduras comerciales, permitiendo el tratamiento de datos colorimétricos y espectrales, y confiriendo al usuario pleno control del proceso y la gestión de los datos obtenidos.
Adicinalmente, en este estudio se expone el análisis de los principales factores que afectan a la caracterización tales como el sensor empleado, los parámetros de la cámara durante la toma, la iluminación, el modelo de regresión, y el conjunto de datos empleados como entrenamiento del modelo. Se ha aplicado un modelo de regresión basado en procesos Gaussianos, y se ha comparado con los resultados obtenidos mediante polinomios. También presentamos un nuevo esquema de trabajo que permite la selección automática de muestras de color, adaptado al rango cromático de la escena, que se ha denominado P-ASK, basado en el algoritmo de clasificación K-means.
Los resultados obtenidos en esta tesis demuestran que el proceso metodológico de caracterización propuesto es altamente aplicable en tareas de documentación y preservación del patrimonio cultural en general, y en arte rupestre en particular. Se trata de una metodología de bajo coste, no invasiva, que permite obtener el registro colorimétrico de escenas completas. Una vez caracterizada, una cámara digital convencional puede emplearse para la determinación del color de forma rigurosa, simulando un colorímetro, lo que permitirá trabajar en un espacio de color de base física, independiente del dispositivo y comparable con / [CA] Les tasques de documentació gràfica d'art rupestre són àrdues i delicades, on el color compleix un paper fonamental, proporcionant informació vital a nivell descriptiu, t\`ecnic i quantitatiu.Tradicionalment els mètodes de documentació en arqueologia quedaven restringits a procediments estrictament subjectius, comportant limitacions pràctiques i tècniques, afectant els resultats obtinguts en la determinació de la color. L'ús combinat de tècniques geomàtiques, com la fotogrametria o el làser escàner, juntament amb tècniques de processament i realç d'imatges digitals, ha suposat un notable avanç. Tot i que les imatges digitals permeten capturar el color de forma ràpida, senzilla, i no invasiva, les dades RGB proporcionades per la càmera no tenen un sentit colorimètric rigorós. Es requereix l'aplicació d'un procés rigorós de transformació que permeti obtenir dades fidedignes de la color a través d'imatges digitals.
En aquesta tesi es proposa una solució científica innovadora i d'avantguarda, en la qual es persegueix integrar l'anàlisi espectrofotomètric i colorimètric com a complement a tècniques fotogramètriques que permetin una millora en la identificació de la color i representació de pigments amb màxima fiabilitat en aixecaments, models i reconstruccions tridimensionals 3D. La metodologia proposada es basa en la caracterització colorimètrica de sensors digitals, que és de novell aplicació en pintures rupestres. La caracterització pretén obtenir les equacions de transformació entre les dades de color registrats per la càmera, dependents d'el dispositiu, i espais de color independents, de base física, com els establerts per la Commission Internationale de l'Éclairage (CIE).
Per al tractament de dades colorimètriques i espectrals de forma rigorosa es requereix disposar d'un programari de característiques tècniques molt específiques. Encara que hi ha programari comercial, fan per separat el tractament digital d'imatges i les operacions colorimètriques. No hi ha programari que integri totes dues, ni que permeti dur a terme la caracterització. Com a aspecte addicional i fonamental, vam presentar el programari propi que s'ha desenvolupat, denominat pyColourimetry, segons les recomanacions publicades per la CIE, de codi obert, i adaptat al flux metodológic proposat, de manera que faciliti la independència i el progrés científic sense lligams comercials, permetent el tractament de dades colorimètriques i espectrals, i conferint a l'usuari ple control del procés i la gestió de les dades obtingudes.
A més, s'exposa l'anàlisi dels principals factors que afecten la caracterització tals com el sensor emprat, els paràmetres de la càmera durant la presa, il¿luminació, el model de regressió, i el conjunt de dades emprades com a entrenament d'el model. S'ha aplicat un model de regressió basat en processos Gaussians, i s'han comparat els resultats obtinguts mitjançant polinomis. També vam presentar un nou esquema de treball que permet la selecció automàtica de mostres de color, adaptat a la franja cromàtica de l'escena, que s'ha anomenat P-ASK, basat en l'algoritme de classificació K-means.
Els resultats obtinguts en aquesta tesi demostren que el procés metodològic de caracterització proposat és altament aplicable en tasques de documentació i preservació de el patrimoni cultural en general, i en art rupestre en particular. Es tracta d'una metodologia de baix cost, no invasiva, que permet obtenir el registre colorimètric d'escenes completes. Un cop caracteritzada, una càmera digital convencional pot emprar-se per a la determinació de la color de forma rigorosa, simulant un colorímetre, el que permetrà treballar en un espai de color de base física, independent d'el dispositiu i comparable amb dades obtingudes mitjançant altres càmeres que tambè estiguin caracteritzades. / [EN] Cultural heritage documentation and preservation is an arduous and delicate task in which color plays a fundamental role. The correct determination of color provides vital information on a descriptive, technical and quantitative level. Classical color documentation methods in archaeology were usually restricted to strictly subjective procedures. However, this methodology has practical and technical limitations, affecting the results obtained in the determination of color. Nowadays, it is frequent to support classical methods with geomatics techniques, such as photogrammetry or laser scanning, together with digital image processing. Although digital images allow color to be captured quickly, easily, and in a non-invasive way, the RGB data provided by the camera does not itself have a rigorous colorimetric sense. Therefore, a rigorous transformation process to obtain reliable color data from digital images is required.
This thesis proposes a novel technical solution, in which the integration of spectrophotometric and colorimetric analysis is intended as a complement to photogrammetric techniques that allow an improvement in color identification and representation of pigments with maximum reliability in 3D surveys, models and reconstructions. The proposed methodology is based on the colorimetric characterization of digital sensors, which is of novel application in cave paintings. The characterization aims to obtain the transformation equations between the device-dependent color data recorded by the camera and the independent, physically-based color spaces, such as those established by the Commission Internationale de l'Éclairage (CIE).
The rigorous processing of color and spectral data requires software packages with specific colorimetric functionalities. Although there are different commercial software options, they do not integrate the digital image processing and colorimetric computations together. And more importantly, they do not allow the camera characterization to be carried out. Therefore, as a key aspect in this thesis is our in-house pyColourimetry software that was developed and tested taking into account the recommendations published by the CIE. pyColourimetry is an open-source code, independent without commercial ties; it allows the treatment of colorimetric and spectral data and the digital image processing, and gives full control of the characterization process and the management of the obtained data to the user.
On the other hand, this study presents a further analysis of the main factors affecting the characterization, such as the camera built-in sensor, the camera parameters, the illuminant, the regression model, and the data set used for model training. For computing the transformation equations, the literature recommends the use of polynomial equations as a regression model. Thus, polynomial models are considered as a starting point in this thesis. Additionally, a regression model based on Gaussian processes has been applied, and the results obtained by means of polynomials have been compared. Also, a new working scheme was reported which allows the automatic selection of color samples, adapted to the chromatic range of the scene. This scheme is called P-ASK, based on the K-means classification algorithm.
The results achieved in this thesis show that the proposed framework for camera characterization is highly applicable in documentation and conservation tasks in general cultural heritage applications, and particularly in rock art painting. It is a low-cost and non-invasive methodology that allows for the colorimetric recording from complete image scenes. Once characterized, a conventional digital camera can be used for rigorous color determination, simulating a colorimeter. Thus, it is possible to work in a physical color space, independent of the device used, and comparable with data obtained from other cameras that are also characterized. / Thanks to the Universitat Politècnica de València for the FPI scholarship / Molada Tebar, A. (2020). Colorimetric and spectral analysis of rock art by means of the characterization of digital sensors [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/160386 / Compendio
|
Page generated in 0.0867 seconds