51 |
Estudo de um novo conceito de coluna de destilação = coluna de destilação com integração interna de calor (CDIIC) / Study of a new concept of distillation column : heat integrated distillation column (HIDiC)León Pulido, Jeffrey 06 February 2011 (has links)
Orientador: Maria Regina Wolf Maciel / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-18T13:05:57Z (GMT). No. of bitstreams: 1
LeonPulido_Jeffrey_M.pdf: 4335484 bytes, checksum: 1254077c83c41b27fa94e266ba5cb9c8 (MD5)
Previous issue date: 2011 / Resumo: Os processos de separação são amplamente usados na indústria petrolífera e alcoolquímica. O processo de destilação representa por volta de 40% dos custos da energia requerida nas operações industriais e grande quantidade de energia do processo não é aproveitada, sendo perdida ao ambiente. No Brasil, devido aos avanços industriais e à necessidade do mercado energético, inovações ao processo convencional de separação são essenciais para o desenvolvimento de novas estratégias e projetos que permitam uma diminuição do consumo de energia. Neste trabalho, foi desenvolvido o estudo do novo conceito de Coluna de Destilação com Integração Interna de Calor (CDIIC) a qual é referenciada na literatura como coluna HIDiC (Heat Integrated Distillation Column) na qual a seção de retificação opera a pressões e temperaturas maiores que a seção de esgotamento; assim, aproveita-se o calor da seção de retificação para aquecer a seção de esgotamento. O simulador de processos Aspen Plus V7.2 foi utilizado para o estudo e a implementação de uma modelagem da configuração no simulador, a qual é uma modelagem aproximada, pois o mesmo não possui este tipo de Operação Unitária. As simulações desenvolvidas foram feitas visando os cenários mais realistas que descrevessem a nova configuração, simplificando as complexidades do projeto e criando estratégias de convergência que permitam o estudo do potencial de diminuição do consumo de energia desta configuração. Na coluna CDIIC, as seções de retificação e de esgotamento se encontram dispostas de forma concêntrica e para garantir a operabilidade são usados um compressor e uma válvula para obter as temperaturas e pressões necessárias ao sistema. Na atualidade, esta configuração não é uma realidade na indústria sendo o projeto interno o de maior complexidade, além da falta de dados experimentais da coluna em uma escala suficientemente adequada para comparações. Na coluna CDIIC, estudos de transferência de calor foram realizados indicando os parâmetros de processo, como posição de alimentação, quantidade de calor trocado e possíveis configurações internas. Até o momento, aqui no Brasil, ainda não se encontram trabalhos publicados na área. Pela faixa de aplicabilidade, a coluna CDIIC terá muitas aplicações importantes, seja na área petroquímica, seja na alcoolquímica, sendo uma alternativa com potencial para a diminuição do consumo de energia em processos de destilação / Abstract: The separation processes are largely used in petroleum and alcohol-chemical industries. The distillation process represents around 40% of energy costs in industrial operation, thus large among of energy of the process is not used and it is lost to the surrounding. In Brazil, industrial developments and the need of energy market allowed innovations to the conventional separation process. This is essential for the development of new strategies and designs that enable a reduction in energy consumption. In the present work a study of the new concept of Heat Integrated Distillation Colum which is referenced in literature as HIDiC column was developed. In this column, the rectifying section operates at higher pressures and temperatures than the stripping section. Thus, the heat of rectifying section is used to heat the stripping section. The Aspen Plus V7.2 software was used for the study of column configuration and the potential of heat transfer, since it does not have this type of unit operation. The simulations shows a more realistic situation able to model the new configuration, simplifying the complexities of design and creating strategies that facilitate the study of the potential for reducing the energy consumption of this configuration. In HIDiC column, the rectifying and stripping section are concentrically and to ensure operability a compressor and throttle valve are applied to achieve the temperatures and pressures required by the system. Currently, this configuration is not a reality in the industry, because the lack of experimental data from the column. In addition, the complexity of internal configuration needs to be solved. In HIDiC column, heat transfer studies were performed showing the process parameters such as feed position, amount of heat exchanged and the initial concentration. So far, in Brazil has not been published works about this technology. The range of applicability of HIDiC column has many important applications in petrochemical and alcohol-chemical industries and it represents an alternative for reducing the energy consumption in distillation process / Mestrado / Desenvolvimento de Processos Químicos / Mestre em Engenharia Química
|
52 |
Techno-economic feasibility analysis of process alternatives for ethanol production in Brazil = Análise de viabilidade técnico-econômica de alternativas de processo para a produção de etanol no Brasil / Análise de viabilidade técnico-econômica de alternativas de processo para a produção de etanol no BrasilJunqueira, Tassia Lopes, 1985- 26 August 2018 (has links)
Orientadores: Rubens Maciel Filho, Antonio Maria Francisco Luiz José Bonomi / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-26T21:18:06Z (GMT). No. of bitstreams: 1
Junqueira_TassiaLopes_D.pdf: 2176250 bytes, checksum: a96672c7acc2952a71b12c8c709f193c (MD5)
Previous issue date: 2015 / Resumo: As usinas de cana-de-açúcar encaixam-se no conceito de biorrefinaria, uma vez que produzem etanol, açúcar e eletricidade, entre outros produtos. A produção de etanol de 1ª geração (1G), a partir do caldo de cana-de-açúcar, é um processo bem estabelecido, enquanto a produção de etanol a partir de materiais lignocelulósicos, denominado processo de 2ª geração (2G), tem recebido atenção especial nas últimas décadas. No Brasil, bagaço e palha são as matérias-primas de maior potencial para a produção de etanol 2G devido a sua disponibilidade e relativo baixo custo, no entanto o processo não está consolidado até o momento. O presente estudo teve por objetivo estudar a integração de diferentes tecnologias ao processo de produção de etanol, considerando as tecnologias 1G e 2G, a fim de avaliar os impactos na viabilidade técnico-econômica das biorrefinarias de cana-de-açúcar. Resultados mostraram que a diversificação dos produtos, através da produção de açúcar, eletricidade e biogás, bem como a flexibilidade na produção melhoram a viabilidade técnico-econômica e diminuem a suscetibilidade às oscilações de mercado, aumentando a estabilidade dos negócios. Para a produção de etanol 2G, os impactos das condições operacionais da hidrólise enzimática e características das enzimas no processo integrado de produção de etanol 1G2G foram avaliados através da formulação de um modelo matemático e análise estatística. Visando à redução do custo de produção do etanol, as melhores condições operacionais foram determinadas e mostraram-se muito sensíveis ao preço de enzimas. A extensão do período de operação das biorrefinarias de cana-de-açúcar, que é usualmente de 6 a 8 meses por ano, permite reduzir a contribuição do investimento no custo de produção de etanol. O processamento de sorgo sacarino durante a entressafra de cana-de-açúcar apresentou expressivo potencial para incrementar a produção de etanol e eletricidade, bem como melhorar a viabilidade econômica. A integração de uma planta 2G processando o ano todo resultou em uma alternativa promissora, mas com alto investimento quando comparada às demais alternativas. A abordagem apresentada nesta tese pode ser utilizada para avaliar outras rotas e tecnologias, identificando gargalos tecnológicos e guiando a pesquisa a fim de aumentar a viabilidade do processo / Abstract: Sugarcane mills fit into the biorefinery concept, since ethanol, sugar and electricity, among others, are possible products. The first generation (1G) ethanol production, from sugarcane juice, is a well-established process, while ethanol production from lignocellulosic materials, the so-called second generation (2G) process, has received special attention in the last decades. In Brazil, sugarcane bagasse and straw are potentially the most important feedstock for 2G ethanol production due to their availability and relative low cost, but the process is not established yet. This study focused on the integration of different technologies in the ethanol production process, taking into account both 1G and 2G technologies, in order to assess the impacts on techno-economic feasibility of sugarcane biorefineries. Results showed that product diversification, through production of sugar, electricity and biogas, as well as production flexibility improve techno-economic feasibility and reduce susceptibility to market oscillations, improving business stability. For 2G ethanol production, the impacts of operating conditions on enzymatic hydrolysis and enzyme features in the integrated 1G2G ethanol production process were assessed through the formulation of a mathematical model and statistical evaluation. Aiming at the reduction of ethanol production cost, best operating conditions were determined and showed to be very sensitive to enzyme prices. Extending the operation period of sugarcane biorefineries, which is from 6 to 8 months per year, allows reducing contribution of investment on ethanol production cost. Sweet sorghum, processed in the sugarcane off-season, presented a great potential to increase ethanol and electricity production as well as to improve economic feasibility. Integration of a 2G plant processing all year-round resulted in a promising alternative, but presents high investment cost compared to other alternatives. The approach presented in this thesis can be used to perform assessments of other routes and technologies, identifying technological bottlenecks and guiding research in order to improve process feasibility / Doutorado / Desenvolvimento de Processos Químicos / Doutora em Engenharia Quimica
|
53 |
Leather Shaving – A New Approach for Understanding the Shaving ProcessWitt, Tilman, Klüver, Enno, Nikowski, A., Meyer, M. 05 July 2019 (has links)
Content:
The shaving process is one of the most important steps in leather production. However, the underlying principles and mechanisms are not yet fully understood. Generally, the successful performance of the shaving process is based on long-time experience, and the tanneries rather optimize the preceding process steps than change the shaving parameters. In a current research project the research partners (Heusch GmbH, TU Dresden and FILK gGmbH) have united their expertise in order to understand the interaction between the shaving blade and the semi-finished leather (wet-blue or wet-white). The objective of the project is to gain more insight into the physics of shaving and to create a background of knowledge, which will be the technical base for developing novel and more effective shaving blades.
Heusch presents the advantages of a novel serrated shaving blade. In comparison with the standard design an serrated blade yields higher shaving accuracy and uniform thickness of the hides. Stretching forces along the dorsal line of the hides are reduced, which avoids structural damage. Marginal hide regions are less frayed, thus increasing the usable surface area. The small size and compact form of the shavings are advantageous for recycling and disposal. Exploiting these advantages combined with an optimized grinding process, the user can increase the lifetime of the serrated blades. Based on these experiences there is an urgent need to thoroughly understand the physical cutting processes which take place during the shaving step.
In the current research project an experimental test station is designed which is intended to simulate the shaving process in a simplified setting as a cutting procedure of a blade into a leather surface. This test station will enable the variation of material, geometry and configuration of the blade as well as the measurement of forces emerging during cutting at the blade and the leather surface, which emerge during cutting. The registered data shall provide information on the question, how the cutting forces depend on technological parameters, like blade material, geometry, configuration, cutting speed, leather moisture or tanning method. Based on the knowledge of these relationships novel, even more effective shaving blades can be developed. In a second approach the cutting process of a single leather fibre will be simulated virtually on a microscale level. The goal is the understanding of the interaction of a moving metal blade with a flexible, unilaterally fixed leather fibre. The simulation is supposed to yield data on cutting speed and fibre behaviour under conditions which are experimentally difficult to access.
Take-Away:
The physical basics of the shaving process are not yet fully understood.
The presented research project aims at the understanding of the interaction between shaving blade and leather fibres during the shaving process.
The approach in the project is to model the cutting procedure in a simplified experimental test station and in a computational simulation model.
|
54 |
Návrh pracoviště s průmyslovým robotem / Design of a Robotic CellMajer, Tomáš January 2018 (has links)
This diploma thesis deals with design of a robotized workplace for welding truss structures. First, the target construction that the work focuses on is shown. Then the functions of the entire workplace are designed, including the procedures for activities and the gross displacement of the used components and their layout. The next chapter itemize specific robots and components. This, along with the solution of safety and ergonomics, makes the layout of the entire workplace more precise. Everything is completed by creating a simulation model in Siemens Tecnomatix Process Simulate, where all the welding operations are simulated.
|
55 |
Návrh techologie výroby plechového dílce karoserie automobilu / Proposal technology of production scheet-metal part of car bodySviták, Martin January 2009 (has links)
The Master’s Thesis is focused on stamping of sheet metal parts. The analyzed part is a structural part of an automobile body. The part is made of DC04 (cold rolled mild steel) material. The annual pruduction volume is 10.000 pieces. Theoretical background research is a knowledge base for design of tooling that can produce parts which meet quality requirements. There are three technological processes proposed in the Thesis. An economic analysis identifies the optimal technological process for the production volume. The thesis contains a complex analysis that confirmes material formability. Computer simulation verifies the part design, material and technological parameters of the forming process.
|
56 |
Animace výrobních systémů / Production system animationVeselský, Josef January 2013 (has links)
This diploma thesis deals with the concept of creating a graphical user interface for the animation of a production process. The thesis is divided into theoretical and practical part. The theoretical part contains a research of the development of the software used for the process simulation. Further there are described the basics of using simulation and animation, its advantages and disadvantages. The theoretical part of this work is completed by the description of the technology and software, which was used for creating graphical interfaces for the animation. The practical part is focused on developing software interfaces. It describes the elements which were used in programming and there are explained basic functions of the software. The practical part is completed with a summary of the output data which the program offers the user. The thesis is accompanied by a CD, which contains the source code and the final vision of the program.
|
57 |
ADVANCED BIOETHANOL PRODUCTION FROM NIPA PALM SAP VIA ACETIC ACID FERMENTATION / ニッパヤシ汁液からの酢酸発酵による先進バイオエタノール生産Nguyen, Van Dung 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第20479号 / エネ博第348号 / 新制||エネ||69(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー社会・環境科学専攻 / (主査)教授 坂 志朗, 教授 梅澤 俊明, 准教授 河本 晴雄 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DGAM
|
58 |
Quantitative Assessment Of Software Development Project Management Issues Using Process Simulation With System Dynamics ElementsMizell, Carolyn 01 January 2006 (has links)
The complexity of software development projects makes estimation and management very difficult. There is a need for improved cost estimation methods and new models of lifecycle processes other than the common waterfall process. This work has developed a new simulation model of the spiral development lifecycle as well as an approach for using simulation for cost and schedule estimation. The goal is to provide a tool that can analyze the effects of a spiral development process as well as a tool that illustrates the difficulties management faces in forecasting budgets at the beginning of a project which may encourage more realistic approaches to budgetary planning. A new discrete event process model of the incremental spiral development lifecycle approach was developed in order to analyze the effects this development approach has on the estimation process as well as cost and schedule for a project. The input data for the key variables of size, productivity, and defect injection rates in the model was based on analysis of Software Engineering Laboratory data and provided for analysis of the effects of uncertainty in early project estimates. The benefits of combining a separate system dynamics model with a discrete event process models was demonstrated as was the effects of turnover on the cost and schedule for a project. This work includes a major case study of a cancelled NASA software development project that experienced cost and schedule problems throughout its history. Analysis was performed using stochastic simulation with derived probability distributions for key software development factors. A system dynamics model of human resource issues was also combined with the process model to more thoroughly analyze the effects of turnover on a project. This research has demonstrated the benefits of using a simulation model when estimating to allow for more realistic budget and schedule determination including an interval estimate to help focus on the uncertainty of early estimates.
|
59 |
Optimization of chemical process simulation: Application to the optimal rigorous design of natural gas liquefaction processesSantos, Lucas F. 30 June 2023 (has links)
Designing products and processes is a fundamental aspect of engineering that significantly impacts society and the world. Chemical process design aims to create more efficient and sustainable production processes that consume fewer resources and emit less pollution. Mathematical models that accurately describe process behavior are necessary to make informed and responsible decisions. However, as processes become more complex, purely symbolic formulations may be inadequate, and simulations using tailored computer code become necessary. The decision‐making process in optimal design requires a procedure for choosing the best option while complying with the system’s constraints, for which task optimization approaches are well suited. This doctoral thesis focuses on black‐box optimization problems that arise when using process simulators in optimal process design tasks and assesses the potential of derivative‐free, metaheuristics, and surrogate‐based optimization approaches. The optimal design of natural gas liquefaction processes is the case study of this research. To overcome numerical issues from black‐box problems, the first work of this doctoral thesis consisted of using the globally convergent Nelder‐Mead simplex method to the optimal process design problem. The second work introduced surrogate models to assist the search towards the global optimum of the black‐box problem and an adaptive sampling scheme comprising the optimization of an acquisition function with metaheuristics. Kriging as surrogate models to the simulation‐optimization problems are computationally cheaper and effective predictors suitable for global search. The third work aims to overcome the limitations of acquisition function optimization and the use of metaheuristics. The proposed comprehensive mathematical notation of the surrogate optimization problem was readily implementable in algebraic modeling language software. The presented framework includes kriging models of the objective and constraint functions, an adaptive sampling procedure, a heuristic for stopping criteria, and a readily solvable surrogate optimization problem with mathematical programming. The success of the surrogate‐based optimization framework relies on the kriging models’ prediction accuracy regarding the underlying, simulation‐based functions. The fourth publication extends the previous work to multi‐objective black‐box optimization problems. It applies the ε constraint method to transform the multi‐objective surrogate optimization problem into a sequence of single‐objective ones. The ε‐constrained surrogate optimization problems are implemented automatically in algebraic modeling language software and solved using a gradient‐based, state‐of‐the‐art solver. The fifth publication is application-driven and focuses on identifying the most suitable mixed‐refrigerant refrigeration technology for natural gas liquefaction in terms of energy consumption and costs. The study investigates five natural gas liquefaction processes using particle swarm optimization and concludes that there are flaws in the expected relationships between process complexity, energy consumption, and total annualized costs. In conclusion, the research conducted in this doctoral thesis demonstrates the importance and capabilities of using optimization to process simulators. The work presented here highlights the potential of surrogate‐based optimization approaches to significantly reduce the computational cost and guide the search in black‐box optimization problems with chemical process simulators embedded. Overall, this doctoral thesis contributes to developing optimization strategies for complex chemical processes that are essential for addressing some of the current most pressing environmental and social challenges. The methods and insights presented in this work can help engineers and scientists design more sustainable and efficient processes, contributing to a better future for all.
|
60 |
Process Analysis and Design in Stamping and Sheet HydroformingYadav, Ajay D. 20 August 2008 (has links)
No description available.
|
Page generated in 0.1236 seconds