• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 13
  • 13
  • 12
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Exploratory Ad-Hoc Analytics for Big Data

Eberius, Julian, Thiele, Maik, Lehner, Wolfgang 19 July 2023 (has links)
In a traditional relational database management system, queries can only be defined over attributes defined in the schema, but are guaranteed to give single, definitive answer structured exactly as specified in the query. In contrast, an information retrieval system allows the user to pose queries without knowledge of a schema, but the result will be a top-k list of possible answers, with no guarantees about the structure or content of the retrieved documents. In this chapter, we present Drill Beyond, a novel IR/RDBMS hybrid system, in which the user seamlessly queries a relational database together with a large corpus of tables extracted from a web crawl. The system allows full SQL queries over a relational database, but additionally enables the user to use arbitrary additional attributes in the query that need not to be defined in the schema. The system then processes this semi-specified query by computing a top-k list of possible query evaluations, each based on different candidate web data sources, thus mixing properties of two worlds RDBMS and IR systems.
42

The Sea of Stuff : a model to manage shared mutable data in a distributed environment

Conte, Simone Ivan January 2019 (has links)
Managing data is one of the main challenges in distributed systems and computer science in general. Data is created, shared, and managed across heterogeneous distributed systems of users, services, applications, and devices without a clear and comprehensive data model. This technological fragmentation and lack of a common data model result in a poor understanding of what data is, how it evolves over time, how it should be managed in a distributed system, and how it should be protected and shared. From a user perspective, for example, backing up data over multiple devices is a hard and error-prone process, or synchronising data with a cloud storage service can result in conflicts and unpredictable behaviours. This thesis identifies three challenges in data management: (1) how to extend the current data abstractions so that content, for example, is accessible irrespective of its location, versionable, and easy to distribute; (2) how to enable transparent data storage relative to locations, users, applications, and services; and (3) how to allow data owners to protect data against malicious users and automatically control content over a distributed system. These challenges are studied in detail in relation to the current state of the art and addressed throughout the rest of the thesis. The artefact of this work is the Sea of Stuff (SOS), a generic data model of immutable self-describing location-independent entities that allow the construction of a distributed system where data is accessible and organised irrespective of its location, easy to protect, and can be automatically managed according to a set of user-defined rules. The evaluation of this thesis demonstrates the viability of the SOS model for managing data in a distributed system and using user-defined rules to automatically manage data across multiple nodes.
43

Voronoi tessellation quality: applications in digital image analysis

A-iyeh, Enoch January 1900 (has links)
A measure of the quality of Voronoi tessellations resulting from various mesh generators founded on feature-driven models is introduced in this work. A planar tessellation covers an image with polygons of various shapes and sizes. Tessellations have potential utility due to their geometry and the opportunity to derive useful information from them for object recognition, image processing and classification. Problem domains including images are generally feature-endowed, non-random domains. Generators modeled otherwise may easily guarantee quality of meshes but certainly bear no reference to features of the meshed problem domain. They are therefore unsuitable in point pattern identification, characterization and subsequently the study of meshed regions. We therefore found generators on features of the problem domain. This provides a basis for element quality studies and improvement based on quality criteria. The resulting polygonal meshes tessellating an n-dimensional digital image into convex regions are of varying element qualities. Given several types of mesh generating sets, a measure of overall solution quality is introduced to determine their effectiveness. Given a tessellation of general and mixed shapes, this presents a challenge in quality improvement. The Centroidal Voronoi Tessellation (CVT) technique is developed for quality improvement and guarantees of mixed, general-shaped elements and to preserve the validity of the tessellations. Mesh quality indicators and entropies introduced are useful for pattern studies, analysis, recognition and assessing information. Computed features of tessellated spaces are explored for image information content assessment and cell processing to expose detail using information theoretic methods. Tessellated spaces also furnish information on pattern structure and organization through their quality distributions. Mathematical and theoretical results obtained from these spaces help in understanding Voronoi diagrams as well as for their successful applications. Voronoi diagrams expose neighbourhood relations between pattern units. Given this realization, the foundation of near sets is developed for further applications. / February 2017
44

Real-time Business Intelligence through Compact and Efficient Query Processing Under Updates

Idris, Muhammad 10 April 2019 (has links)
Responsive analytics are rapidly taking over the traditional data analytics dominated by the post-fact approaches in traditional data warehousing. Recent advancements in analytics demand placing analytical engines at the forefront of the system to react to updates occurring at high speed and detect patterns, trends and anomalies. These kinds of solutions find applications in Financial Systems, Industrial Control Systems, Business Intelligence and on-line Machine Learning among others. These applications are usually associated with Big Data and require the ability to react to constantly changing data in order to obtain timely insights and take proactive measures. Generally, these systems specify the analytical results or their basic elements in a query language, where the main task then is to maintain these results under frequent updates efficiently. The task of reacting to updates and analyzing changing data has been addressed in two ways in the literature: traditional business intelligence (BI) solutions focus on historical data analysis where the data is refreshed periodically and in batches, and stream processing solutions process streams of data from transient sources as flow (or set of flows) of data items. Both kinds of systems share the niche of reacting to updates (known as dynamic evaluation); however, they differ in architecture, query languages, and processing mechanisms. In this thesis, we investigate the possibility of a reactive and unified framework to model queries that appear in both kinds of systems. In traditional BI solutions, evaluating queries under updates has been studied under the umbrella of incremental evaluation of updates that is based on relational incremental view maintenance model and mostly focus on queries that feature equi-joins. Streaming systems, in contrast, generally follow the automaton based models to evaluate queries under updates, and they generally process queries that mostly feature comparisons of temporal attributes (e.g., timestamp attributes) along-with comparisons of non-temporal attributes over streams of bounded sizes. Temporal comparisons constitute inequality constraints, while non-temporal comparisons can either be equality or inequality constraints, hence these systems mostly process inequality joins. As starting point, we postulate the thesis that queries in streaming systems can also be evaluated efficiently based on the paradigm of incremental evaluation just like in BI systems in a main-memory model. The efficiency of such a model is measured in terms of runtime memory footprint and the update processing cost. To this end, the existing approaches of dynamic evaluation in both kind of systems present a trade-off between memory footprint and the update processing cost. More specifically, systems that avoid materialization of query (sub) results incur high update latency and systems that materialize (sub) results incur high memory footprint. We are interested in investigating the possibility to build a model that can address this trade-off. In particular, we overcome this trade-off by investigating the possibility of practical dynamic evaluation algorithm for queries that appear in both kinds of systems, and present a main-memory data representation that allows to enumerate query (sub) results without materialization and can be maintained efficiently under updates. We call this representation the Dynamic Constant Delay Linear Representation (DCLR). We devise DCLRs with the following properties: 1) they allow, without materialization, enumeration of query results with bounded-delay (and with constant delay for a sub-class of queries); 2) they allow tuple lookup in query results with logarithmic delay (and with constant delay for conjunctive queries with equi-joins only); 3) they take space linear in the size of the database; 4) they can be maintained efficiently under updates. We first study the DCLRs with the above-described properties for the class of acyclic conjunctive queries featuring equi-joins with projections and present the dynamic evaluation algorithm. Then, we present the generalization of thiw algorithm to the class of acyclic queries featuring multi-way theta-joins with projections. We devise DCLRs with the above properties for acyclic conjunctive queries, and the working of dynamic algorithms over DCLRs is based on a particular variant of join trees, called the Generalized Join Trees (GJTs) that guarantee the above-described properties of DCLRs. We define GJTs and present the algorithms to test a conjunctive query featuring theta-joins for acyclicity and to generate GJTs for such queries. To do this, we extend the classical GYO algorithm from testing a conjunctive query with equalities for acyclicity to test a conjunctive query featuring multi-way theta-joins with projections for acyclicity. We further extend the GYO algorithm to generate GJTs for queries that are acyclic. We implemented our algorithms in a query compiler that takes as input the SQL queries and generates Scala executable code – a trigger program to process queries and maintain under updates. We tested our approach against state of the art main-memory BI and CEP systems. Our evaluation results have shown that our DCLRs based approach is over an order of magnitude efficient than existing systems for both memory footprint and update processing cost. We have also shown that the enumeration of query results without materialization in DCLRs is comparable (and in some cases efficient) as compared to enumerating from materialized query results.

Page generated in 0.1745 seconds