• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Different Forward Osmosis Membrane Cleaning Strategies for Produced Water Streams Treatment

Alamoudi, Talal 07 1900 (has links)
Forward osmosis (FO) as a novel membrane separation technology has recently been investigated in various water treatment applications. The natural mass transfer process between two solutions driven by the osmotic pressure difference leads to many operational advantages in the FO process, such as low energy consumption and minimal fouling problems. It makes FO a feasible technology for the treatment of produced water (PW). Although previously, the treatment of PW using FO has been investigated, osmotic backwashing (OB) is not systematically examined for water flux recovery of the PW fouled FO membranes. Moreover, the cleaning of FO membranes used for the simultaneous treatment of different PW streams was never previously attempted. In this study, OB was thoroughly investigated for the cleaning of PW-fouled FO membranes. Also, FO membrane chemical cleaning using SDS and NaOH solutions was examined too. To investigate OB, the cleaning efficiency of a 60 min OB cleaning protocol was examined under different FO operating modes in (5 x 20 h) experiments using synthetic desalter effluent as FO feed solution (FS) and 1.2 M NaCl solution or water-oil separator outlet (WO) as draw solutions (DS). The AL-FS (active layer facing FS) mode outcompeted the AL-DS (active layer facing DS) mode, achieving a flux of 12.9 LMH and 80.1% water reclamation when using WO as a DS. Therefore, this FO configuration 5 was selected when evaluating the cleaning protocols. Moreover, after evaluating different OB methods, the 30 min OB protocol achieved the highest system efficiency rate of 95% and was studied for the treatment of real PW streams. The SDS and NaOH chemical cleaning methods achieved flux recovery rates of 99% and 98% by the end of the third treatment cycle, respectively, outperforming the 89% flux recovery rate of the optimized OB protocol. Although the investigated cleaning methods were able to restore the system performance, a substantial increase in RSF was observed due to mainly irreversible colloidal fouling. This study demonstrates the feasibility of OB and chemical cleaning in restoring FO system performance for the simultaneous treatment of PW streams
2

Evaluating Leachability of Residual Solids Generated from Unconventional Shale Gas Production Operations in Marcellus Shale

Sharma, Shekar 17 September 2014 (has links)
Hydraulic fracturing operations utilized for shale gas production result in the generation of a large volume of flowback and produced water that contain suspended material, salts, hydrocarbons, metals, chemical additives, and naturally-occurring radioactive material. The water is impounded at drilling sites or treated off-site, resulting in significant generation of residual solids. These are either buried on site or are disposed in lined landfills. The objective of this study was to determine the levels of heavy metals and other elements of concern that will leach from these residual solids when placed in typical disposal environments. For this purpose, laboratory leaching experiments were employed wherein representative samples were brought into contact with a liquid to determine the constituents that would be leached by the liquid and potentially released into the environment. The samples used included sludge resulting from the physicochemical treatment of process water (TS), sludge solidified with cement kiln dust (SS), raw solids obtained by gravity separation of process water (RS), and drilling mud (DM). The samples were subjected to both single extraction (i.e. Shake Extraction Test, SET) and multiple extraction (i.e. Immersion Test, IT) leaching tests. For the shake extraction test, samples were mixed with a specific amount of leaching solution without renewal over a short time period. In the immersion test, samples were immersed in a specific amount of leaching solution that was periodically renewed over a longer period of time. For both these tests, analyses were performed on the filtered eluate. The tests were performed as per standards with modifications. Distilled de-ionized water, synthetic acid rain (pH ~ 4.2), weak acetic acid (pH ~ 2.88), and synthetic landfill leachate were used as leaching solutions to mimic specific disposal environments. Alkali metals (Li, K, Na), alkaline earth metals (Ba, Ca, Mg, Sr) and a halide (Br), which are typically associated with Marcellus shale and produced waters, leached at high concentrations from most of the residual solids sample. The SS sample, due to its stabilization with CKD, had a lower extraction efficiency as compared to the unconsolidated TS and RS samples. In EF 2.9 and EF SLL, the leaching took place under acidic conditions, while for EF DDI and EF 4.2, the leaching occurred in alkaline conditions. EF 2.9 and EF SLL were determined to be the most aggressive leaching solutions, causing the maximum solubility of most inorganic elements. Thus, high amounts of most EOCs may leach from these residual solids in MSW landfills disposed under co-disposal conditions. Agitation, pH and composition of the leaching solution were determined to be important variables in evaluating the leaching potential of a sample. The results of this study should help with the design of further research experiments being undertaken to develop environmentally responsible management/disposal strategies for these residual solids and also prove useful for regulatory authorities in their efforts to develop specific guidelines for the disposal of residuals from shale gas production operations. / Master of Science

Page generated in 0.0862 seconds