1 |
Apport de prévisions météorologiques à échelle kilométrique pour la modélisation du manteau neigeux en montagne / Potential of kilometric-resolution meteorological forecasts for snowpack modelling in mountainous terrainQuéno, Louis 24 November 2017 (has links)
Le suivi et la représentation de la variabilité du manteau neigeux en montagne sont des enjeux écologiques et sociétaux majeurs. Le récent développement de modèles météorologiques à échelle kilométrique offre un potentiel nouveau pour améliorer les simulations d'enneigement en montagne. Dans cette thèse, nous avons évalué l'apport des prévisions météorologiques du modèle de prévision numérique du temps AROME à 2.5 km de résolution horizontale pour alimenter le modèle détaillé de manteau neigeux Crocus. Les simulations AROME-Crocus distribuées ont d'abord été évaluées sur les Pyrénées de 2010 à 2014, montrant un apport en termes de représentation de la variabilité spatio-temporelle du manteau neigeux par rapport à l'approche par massif du système opérationnel actuel SAFRAN-Crocus, malgré une surestimation des hauteurs de neige. Par la suite, la valeur ajoutée de produits satellitaires de rayonnements incidents a été étudiée pour des simulations d'enneigement dans les massifs alpins et pyrénéens, soulignant leur bonne qualité en montagne mais un impact mitigé sur le couvert neigeux simulé. Enfin, on a montré comment le schéma de microphysique nuageuse d'AROME associé à Crocus permet de mieux prévoir la formation de glace en surface du manteau neigeux par précipitations verglaçantes dans les Pyrénées. Ces travaux ouvrent la voie à une prévision nivologique distribuée à haute résolution en montagne. / Monitoring and representing the snowpack variability in mountains are crucial ecological and societal issues. The recent development of meteorological models at kilometric scale offers a new potential to improve snowpack simulations in mountains. In this thesis, we assessed the potential of forecasts from the numerical weather prediction model AROME at 2.5 km horizontal resolution to drive the detailed snowpack model Crocus. AROME-Crocus distributed simulations were first evaluated over the Pyrenees from 2010 to 2014. They showed benefits in representing the snowpack spatio-temporal variability as compared to the massif-based approach of the current operational system SAFRAN-Crocus, despite an overestimation of snow depth. Then, we studied the potential added value of satellite-derived products of incoming radiations for simulating the snow cover in the French Alps and Pyrenees. These products were found of good quality in mountains but their impact on the simulated snow cover is questionable. Finally, we showed how the cloud microphysics scheme of AROME associated with Crocus enables to better predict ice formation on top of the snowpack due to freezing precipitation in the Pyrenees. These works pave the way for high-resolution distributed snowpack forecasting in mountains.
|
2 |
Variabilité interannuelle des émissions d'aérosols minéraux en zone semi-aride sahéliennePierre, Caroline 07 December 2010 (has links) (PDF)
Les aérosols minéraux constituent une des plus importantes sources en masse des aérosols atmosphériques. Ces particules ont différents impacts sur l'environnement : elles exercent un forçage radiatif, et peuvent intervenir dans la chimie hétérogène atmosphérique, ainsi que dans la dynamique des nuages. Elles jouent aussi un rôle dans la redistribution de matière à l'échelle globale, notamment par leur dépôt loin des zones sources. L'estimation des quantités d'aérosols minéraux présents dans l'atmosphère, et donc de leurs flux d'émission, qui se font sous l'action du vent en zones arides et semi-arides, demeure l'objet de fortes incertitudes. Si les émissions de particules minérales en zones arides sont relativement bien contraintes à l'heure actuelle, les processus d'érosion éolienne en zones semi-arides sont plus complexes, en raison notamment de la dynamique des états de surface. L'objectif de cette étude est de quantifier les émissions d'aérosols minéraux par érosion éolienne en zone semi-aride sahélienne, et plus précisément d'estimer l'impact de la végétation saisonnière sur ces émissions, sans prendre en compte à ce stade les perturbations induites par l'action de l'homme. Nous avons mis en œuvre des outils de modélisation pour simuler le couvert végétal saisonnier et l'émission d'aérosols par érosion éolienne. La zone d'étude est la ceinture sahélienne, de 10°N à 20°N et de 20°W à 35°E. Les résolutions spatiales retenues sont de 0.10° à 0.25° et 0.5°, et la résolution temporelle de 1 à 10 jours. Afin de pouvoir tenir compte de la variabilité interannuelle des phénomènes observés, la couverture temporelle de l'étude est de 4 ans, sur la période 2004-2007. En régions semi-arides, la disponibilité en eau est le principal facteur limitant le développement de la végétation. Trois produits d'estimation des précipitations issus d'observations satellitaires (CMORPH, RFE2.0 et TRMM3B42) ont donc été comparés entre eux et comparés à des mesures de pluviomètres spatialement interpolées (AGHRYMET), au cours de la saison des pluies au Sahel. Trois critères de comparaisons ont été définis pour qualifier leur pertinence en termes de dynamique de la végétation (distribution spatiale, fréquence journalière et quantités des précipitations). Les trois produits sélectionnés montrent un bon accord sur la ceinture sahélienne, et ce pour les trois critères. De plus, le niveau d'accord est stable au cours du temps, de l'échelle intrasaisonnière à l'échelle interannuelle. La végétation est simulée avec le modèle STEP, conçu spécifiquement pour reproduire la dynamique de la végétation sahélienne. Les simulations sont réalisées en utilisant en entrée les trois champs de pluie issus de l'étape précédente. Les résultats sont comparés à des observations régionales issues de mesures satellitaires (LAI MODIS). Les critères de comparaisons sont déterminés pour leur pertinence en termes de caractérisation de l'état de la surface (limite nord, dates de démarrage et de maximum, et valeurs du maximum de végétation). Ces comparaisons montrent la capacité du modèle utilisé à reproduire la dynamique régionale annuelle. Les différentes phases du cycle végétatif sont bien restituées, avec toutefois des réserves sur le démarrage précis de la pousse. Les émissions d'aérosols désertiques sont simulées en utilisant le modèle DPM, qui repose sur la description explicite des processus physiques mis en jeu. Les caractéristiques des états de surface en l'absence de végétation (rugosité, types de sol) sont décrites en se basant sur des produits de surface satellitaires et de données issus de d'analyses géomorphologiques. En période végétative, les caractéristiques du couvert végétal simulé (hauteur, taux de couverture) sont converties en termes de rugosité dynamique de la surface. L'effet de l'humidité gravimétrique de la couche superficielle du sol est également pris en compte. L'impact de ces différents facteurs est alors illustré, notamment les différences dues à la présence du couvert végétal, en termes d'émissions d'aérosols minéraux, dans une zone définie comme la " frange émissive saisonnièrement végétalisée ", et dont l'étendue varie selon l'année et le produit de pluie utilisé en forçage. Pour la période 2004 à 2007, la strate herbacée saisonnière présente ainsi une capacité d'inhibition des émissions de l'ordre de 8 à 28% en masse du flux total annuel de cette frange, qui lui peut varier de 1 à 30 Mt environ.
|
Page generated in 0.0935 seconds