1 |
Apprentissage par renforcement hiérarchique et factoriséKozlova, Olga 07 June 2010 (has links) (PDF)
Cette thèse a été réalisée dans un contexte de simulation industrielle qui s'intéresse aux problèmes de la modélisation du comportement humain dans les simulateurs d'entraînement militaire ou de sécurité civile. Nous avons abordé cette problématique sous l'angle de l'apprentissage et de la planification dans l'incertain, en modélisant les problèmes que nous traitons comme des problèmes stochastiques de grande taille dans le cadre des Processus de Décision Markoviens (MDP). Les MDP factorisés (FMDP) sont un cadre standard de représentation des problèmes séquentiels dans l'incertain, où l'état du système est décomposé en un ensemble de variables aléatoires. L'apprentissage par renforcement factorisé (FRL) est une approche d'apprentissage indirecte dans les FMDP où les fonctions de transition et de récompense sont inconnues a priori et doivent être apprises sous une forme factorisée. Par ailleurs, dans les problèmes où certaines combinaisons de variables n'existent pas, la représentation factorisée n'empêche pas la représentation de ces états que nous appelons impossibles. Dans la première contribution de cette thèse, nous montrons comment modéliser ce type de problèmes de manière théoriquement bien fondée. De plus, nous proposons une heuristique qui considère chaque état comme impossible tant qu'il n'a pas été visité. Nous en dérivons un algorithme dont les performances sont démontrées sur des problèmes jouet classiques dans la littérature, MAZE6 et BLOCKS WORLD, en comparaison avec l'approche standard. Pour traiter les MDP de grande taille, les MDP hiérarchiques (HMDP) sont aussi basés sur l'idée de la factorisation mais portent cette idée à un niveau supérieur. D'une factorisation d'état des FMDP, les HMDP passent à une factorisation de tâche, où un ensemble de situations similaires (définies par leurs buts) est représenté par un ensemble de sous-tâches partiellement définies. Autrement dit, il est possible de simplifier le problème en le décomposant en sous-problèmes plus petits et donc plus faciles à résoudre individuellement, mais aussi de réutiliser les sous-tâches afin d'accélérer la recherche de la solution globale. Le formalisme des options qui inclut des actions abstraites à durée étendue, permet de modéliser efficacement ce type d'architecture. La deuxième contribution de cette thèse est la proposition de TeXDYNA, un algorithme pour la résolution de MDP de grande taille dont la structure est inconnue. TeXDYNA combine les techniques d'abstraction hiérarchique de l'apprentissage par renforcement hiérarchique (HRL) et les techniques de factorisation de FRL pour décomposer hiérarchiquement le FMDP sur la base de la découverte automatique des sous-tâches directement à partir de la structure du problème qui est elle même apprise en interaction avec l'environnement. Nous évaluons TeXDYNA sur deux benchmarks, à savoir les problèmes TAXI et LIGHT BOX, et nous montrons que combiner l'abstraction d'information contextuelle dans le cadre des FMDP et la construction d'une hiérarchie dans le cadre des HMDP permet une compression très efficace des structures à apprendre, des calculs plus rapides et une meilleure vitesse de convergence. Finalement, nous estimons le potentiel et les limitations de TeXDYNA sur un problème jouet plus représentatif du domaine de la simulation industrielle.
|
Page generated in 0.158 seconds