• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pricing a Multi-Asset American Option in a Parallel Environment by a Finite Element Method Approach

Kaya, Deniz January 2011 (has links)
There is the need for applying numerical methods to problems that cannot be solved analytically and as the spatial dimension of the problem is increased the need for computational recourses increase exponentially, a phenomenon known as the “curse of dimensionality”. In the Black-Scholes-Merton framework the American option pricing problem has no closed form solution and a numerical procedure has to be employed for solving a PDE. The multi-asset American option introduces challenging computational problems, since for every added asset the dimension of the PDE is increased by one. One way to deal with the curse of dimensionality is threw parallelism. Here the finite element method-of-lines is used for pricing a multi-asset American option dependent on up to four assets in a parallel environment. The problem is also solved with the PSOR method giving a accurate benchmark used for comparison. In finance the put option is one of the most fundamental derivatives since it is basically asset-value insurance and a lot of research is done in the field of quantitative finance on accurate and fast pricing techniques for the multi-dimensional case. “What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.” Norbert Wiener “As soon as an Analytical Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will then arise – by what course of calculation can these results be arrived at by the machine in the shortest time?” Charles Babbage
2

Pricing of European- and American-style Asian Options using the Finite Element Method

Karlsson, Jesper January 2018 (has links)
An option is a contract between two parties where the holder has the option to buy or sell some underlying asset after a predefined exercise time. Options where the holder only has the right to buy or sell at the exercise time is said to be of European-style, while options that can be exercised any time before the exercise time is said to be of American-style. Asian options are options where the payoff is determined by some average value of the underlying asset, e.g., the arithmetic or the geometric average. For arithmetic Asian options, there are no closed-form pricing formulas, and one must apply numerical methods. Several methods have been proposed and tested for Asian options. For example, the Monte Carlo method isslowforEuropean-styleAsianoptionsandnotapplicableforAmerican-styleAsian options. In contrast, the finite difference method have successfully been applied to price both European- and American-style Asian options. But from a financial point of view, one is also interested in different measures of sensitivity, called the Greeks, which are hard approximate with the finite difference method. For more accurate approximations of the Greeks, researchers have turned to the finite element method with promising results for European-style Asian options. However, the finite element method has never been applied to American-style Asian options, which still lack accurate approximations of the Greeks. Here we present a study of pricing European- and American-style Asian options using the finite element method. For European-style options, we consider two different pricing PDEs. The first equation we consider is a convection-dominated problem, which we solve by applying the so-called streamline-diffusion method. The second equation comes from modelling Asian options as options on a traded account, which we solve by using the so-called cG(1)cG(1) method. For American-style options, the model based on options on a traded account is not applicable. Therefore, we must consider the first convection-dominated problem. To handle American-style options, we study two different methods, a penalty method and the projected successive over-relaxation method. For European-style Asian options, both approaches give good results, but the model based on options on a traded account show more accurate results. For American-style Asian options, the penalty method give accurate results. Meanwhile, the projected successive over-relaxation method does not converge properly for the tested parameters. Our result is a first step towards an accurate and fast method to calculate the price and the Greeks of both European- and American-style Asian options. Because good estimations of the Greeks are crucial when hedging and trading of options, we anticipate that the ideas presented in this work can lead to new ways of trading with Asian options.

Page generated in 0.1419 seconds