• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 13
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 84
  • 34
  • 24
  • 22
  • 18
  • 17
  • 17
  • 16
  • 16
  • 15
  • 13
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Étude des modifications post-traductionnelles de la sous-unité HIF-1alpha du facteur de transcription HIF-1

Déry, Marc-André 17 April 2018 (has links)
Dans certaines situations physiologiques et pathologiques, la concentration tissulaire en oxygène diminue grandement, créant ainsi une situation d'hypoxie. Heureusement, les cellules de mammifères possèdent un mécanisme de réponse efficace envers un stress hypoxique assuré par le facteur de transcription inductible par l'hypoxie, HIF-1. Le facteur HIF-1 est constitué de deux sous-unités : HIF-1β et HIF-1α. La sous-unité HIF-1β demeure invariable en fonction des niveaux d'oxygénation. En revanche, la sous-unité HIF-1 a est hautement régulée par les niveaux d'oxygénation. En normoxie, HIF-1α est rapidement hydroxylée par les prolyl-hydroxylases (PHD). L'hydroxylation de HIF-1α mène à sa reconnaissance par la protéine E3-ubiquitine ligase pVHL (von Hippel-Lindau protein), ciblant ainsi la protéine HIF-1 a ubiquitinylée vers la dégradation par le protéasome. À l'inverse, en hypoxie, l'hydroxylation de HIF-la est fortement diminuée, ce qui provoque la stabilisation de HIF-1α et la formation du dimère HIF-1 responsable de l'expression des gènes cibles impliqués dans la réponse adaptatrice des cellules à l'hypoxie. Outre l'hydroxylation et l'ubiquitinylation, la sous-unité a subie également plusieurs autres modifications telles que la phosphorylation, la sumoylation et la S-nitrosylation. Les travaux présentés dans cette thèse visent à démontrer l'impact de nouvelles modifications post-traductionnelles de HIF-1α sur l'activité du facteur HIF-1. Dans un premier temps, des travaux portant sur l'acétylation de la sous-unité HIF-1α par l'acetyltransferase ARD1 (Arrest-defective-1) seront présentés. En 2002, une étude démontrait que la protéine ARD1 était responsable de l'acétylation de HIF-1α, contribuant ainsi à son association avec pVHL et à sa dégradation. Cependant, nos travaux démontrent plutôt qu'ARDl n'est pas impliquée dans la stabilité de HIF-1α. Dans un deuxième temps, nous démontrons un rôle clé de la peptidyl-prolyl isomérase PIN1 sur l'activité transcriptionnelle du facteur HIF-1 et l'expression d'un gène cible important, le facteur de croissance des cellules endothéliales vasculaires (VEGF). Finalement, nous présentons des travaux impliquant la methylation de HIF-1α et le rôle important de cette modification sur l'activité du facteur HIF-1. Bref, l'étude de nouvelles modifications de la protéine HIF-1α s'avère donc fondamentale pour la compréhension de la régulation de HIF-1, tant au niveau des fonctions physiologiques et pathologiques importantes de HIF-1 qu'au niveau du développement de stratégie thérapeutique.
12

Genetic Analysis of NifM Interaction with the Fe Protein of Nitrogenase

Raja, Kumaraguru 02 May 2006 (has links)
No description available.
13

Development of Bicyclic Peptidyl Inhibitors against Peptidyl-Prolyl Isomerase Pin1

Jiang, Bisheng 19 May 2015 (has links)
No description available.
14

Prolyl hydroxylases:cloning and characterization of novel human and plant prolyl 4-hydroxylases, and three human prolyl 3-hydroxylases

Fonsén, P. (Päivi) 11 December 2007 (has links)
Abstract Prolyl hydroxylases catalyze the post-translational formation of 3- and 4-hydroxyprolines in polypeptides. To date, two prolyl 4-hydroxylase families are known to exist: collagen prolyl 4-hydroxylases (C-P4Hs) which reside in the endoplasmic reticulum, and hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) which reside in either the cytoplasm or nucleus. C-P4Hs and HIF-P4Hs belong to the 2-oxoglutarate dioxygenase family and require Fe2+, 2-oxoglutarate, O2 and ascorbate in their reaction. C-P4Hs are critical enzymes in collagen biosynthesis since the formation of 4-hydroxyproline residues stabilizes the collagen triple helix at body temperature. HIF-P4Hs regulate, through hypoxia-inducible factor HIF, the expression of genes that are essential for the survival of cells during hypoxia. This thesis reports the cloning and characterization of two novel P4Hs, from human and a plant, which show some distinct features when compared to previously characterized P4Hs. The human P4H was found to have a unique transmembrane domain, with its catalytic region residing inside the lumen of the endoplasmic reticulum, its subcellular localization thus being identical to that of the C-P4Hs. However, unlike C-P4Hs, it hydroxylated HIF-α both in vitro and in cellulo. Furthermore, its expression level was induced in hypoxic conditions in most of the cell lines studied. The Arabidopsis thaliana P4H had distinct differences in its substrate specificity when compared to another previously characterized A. thaliana P4H. Interestingly, the putative peptide binding regions of the two new P4Hs characterized in this study shared some homology. Three prolyl 3-hydroxylase (P3H) isoenzymes are known to exist in vertebrates and they also belong to the 2-oxoglutarate dioxygenases. It is known that 3-hydroxyprolines are found only in collagens, being most abundant in type IV collagen. The function of this modification is as yet poorly understood, but its absence in collagen I has recently been shown to lead to recessive lethal osteogenesis imperfecta. The human P3H isoenzymes were cloned during these thesis studies, and were expressed as recombinant proteins. The kinetic properties of one of them, P3H2, which was found to be expressed in structures rich with basement membranes, was studied in detail. / Tiivistelmä Prolyylihydroksylaasit ovat entsyymejä, jotka katalysoivat 3- ja 4-hydroksiproliinien muodostumisen valkuaisaineissa. Nykyisin tunnetaan ainakin kaksi prolyyli-4-hydroksylaasien (P4H) entsyymiperhettä: endoplasmakalvostossa sijaitsevat kollageeni prolyyli-4-hydroksylaasit (kollageeni-P4H:t) sekä vähähappisissa olosuhteissa aktivoituvaa transkriptiotekijää, hypoksiaindusoituvaa faktoria (HIF), hydroksyloivat prolyyli-4-hydroksylaasit (HIF-P4H:t). HIF-P4H:t sijaitsevat sytoplasmassa ja tumassa. Sekä kollageeni-P4H:t että HIF-P4H:t kuuluvat 2-oksoglutaraattidioksygenaasien laajaan entsyymiperheeseen. Nämä entsyymit tarvitsevat kosubstraateikseen rautaa, 2-oksoglutaraattia, happea sekä C-vitamiinia. Kollageeni-P4H:t hydroksyloivat kollageenien proliinitähteitä ja ovat avainasemassa kollageenisynteesissä, sillä muodostuneet 4-hydroksiproliinitähteet ovat ehdoton vaatimus stabiilille kollageenirakenteelle. HIF-P4H:t säätelevät puolestaan niiden geenien ilmenemistä, jotka ovat välttämättömiä elimistön selviytymiselle vähähappisissa olosuhteissa. HIF-P4H:t hydroksyloivat HIF-transkriptiotekijän α-alayksikön tiettyjä proliinitähteitä hapen läsnä ollessa, joka ohjaa α-alayksikön proteasomaaliseen hajotukseen eikä aktiivista HIF transkriptiotekijää siten muodostu. Alentuneessa happipitoisuudessa HIF-P4H entsyymien toiminta estyy, HIF stabiloituu ja aktivoi kohdegeeniensä toiminnan. Kollageeni-P4H entsyymejä pidetään erityisen sopivina lääkekehityksen kohteina fibroottisten ja HIF-P4H entsyymejä iskeemisten sairauksien hoitoon. Tässä väitöskirjatyössä on karakterisoitu aiemmin tuntematon ihmisen transmembraaninen P4H entsyymi (P4H-TM). Entsyymi osoittautui indusoituvan vähähappisissa olosuhteissa useissa solulinjoissa ja hydroksyloivan HIF-transkriptiotekijää muistuttaen siten HIF-P4H entsyymejä. Kuitenkin P4H-TM:n solulokalisaatio poikkesi HIF-P4H entsyymeistä, sillä sen havaittiin sijaitsevan endoplasmakalvostossa, katalyyttinen keskus kalvoston sisällä. Näiden tutkimustulosten valossa on oletettavaa, että tällä ihmisentsyymillä on HIF:n lisäksi toinen toistaiseksi tuntematon fysiologinen substraatti. Väitöskirjassa karakterisoitiin toinen lituruohon, Arabidopsis thalianan, P4H (At-P4H-2), joka poikkesi katalyyttisiltä ominaisuuksiltaan aiemmin karakterisoidusta lituruohon P4H:sta. Näiden kahden kasvientsyymin substraattivaatimusten poiketessa selvästi toisistaan, on niillä solussa todennäköisesti spesifiset tehtävät. At-P4H-2:n oletetulla substraatin sitomisalueella on jakso, joka on 37-prosenttisesti identtinen ihmisen P4H-TM:n kanssa, minkä vuoksi At-P4H-2:n karakterisoinnin uskottiin olevan tärkeä apuväline ihmisen P4H-TM:n tutkimuksissa. Selkärankaisilla prolyyli-3-hydroksylaaseja (P3H) tiedetään olevan kolme, ja myös ne kuuluvat 2-oksoglutaraattidioksygenaaseihin. 3-Hydroksiproliinia esiintyy ainoastaan kollageeneissa, erityisesti tyypin IV kollageenissa, joka on tyvikalvojen tärkeä rakennekomponentti. 3-Hydroksiproliinin merkitystä ei tunneta vielä tarkoin, mutta tyypin I kollageenissa 3-hydroksiproliinin puutoksen on osoitettu johtavan vaikeaan luustosairauteen, osteogenesis imperfectaan. Väitöskirjatyössä ihmisen P3H:t kloonattiin ja tuotettiin rekombinanttiproteiineina. Yhden isoentsyymin (P3H2) katalyyttiset ominaisuudet määritettiin ja sen osoitettiin ilmenevän erityisesti kudoksissa, joissa on paljon tyvikalvorakenteita.
15

Prolyl 3-hydroxylases and hypoxia-inducible factor 3:their roles in collagen synthesis and hypoxia response, respectively

Pasanen, A. (Annika) 07 June 2011 (has links)
Abstract Collagens are subject to extensive post-translational modifications, including the formation of 4-hydroxyproline, 3-hydroxyproline and hydroxylysine. These reactions are catalyzed by collagen prolyl 4-hydroxylases (C-P4Hs), prolyl 3-hydroxylases (P3Hs) and lysine hydroxylases (LHs), which belong to the 2-oxoglutarate-dependent dioxygenase family and require oxygen for their reaction. 4-Hydroxyproline residues have for a long time been known to be required for the stability of the collagen triple helix, but the role of prolyl 3-hydroxylation was revealed only a few years ago when mutations in P3H1 and the consequent loss of a single 3-hydroxyproline in collagen I was shown to cause recessive osteogenesis imperfecta. In this thesis the human P3H isoenzymes were expressed as recombinant enzymes, and analyses of their tissue expression and kinetic properties revealed that P3H2 is located in tissues rich in basement membranes and that it hydroxylates collagen IV, the major basement membrane collagen. The roles of the collagen hydroxylases and collagen IV in basement membrane formation were further studied using Madin-Darby canine kidney (MDCK) epithelial cells as an in vitro model for cell polarization. 4-Hydroxyproline also has a pivotal role in the system of cellular response to reduced oxygen levels (hypoxia). At a normal oxygen concentration, two proline residues in the α subunit of the hypoxia-inducible factor (HIF) are 4-hydroxylated by the HIF-P4Hs, which target HIF-α for proteasomal degradation. In hypoxia, the HIF-P4Hs are inactive, and the α subunit thus escapes degradation, dimerizes with a β subunit and after recruiting transcriptional coactivators induces the transcription of hypoxia-responsive genes in order to adapt the cell to hypoxia. Three human HIF-α subunits have been characterized to date, of which the third is known to be subject to extensive alternative splicing, with one of the splicing variants acting as a negative regulator of the hypoxia responsive system. Four novel splicing variants generated from the human HIF-3α locus are characterized here, and the expression of HIF-3α variants has been shown to be upregulated by hypoxia in a HIF-1 dependent manner. Further studies on the binding partners and transcriptional activity of HIF-3α revealed that this subunit has a more complex role in the adaptation of cells to hypoxia than had been expected. / Tiivistelmä Kollageenit ovat valkuaisaineita, joihin kohdistuu useita synteesin jälkeisiä muokkauksia kuten 4-hydroksiproliinin, 3-hydroksiproliinin ja hydroksilysiinin muodostuminen. Näitä reaktioita katalysoivat kollageeniprolyyli-4-hydroksylaasit (C-P4H:t), prolyyli-3-hydroksylaasit (P3H:t) ja lysyylihydroksylaasit (LH:t), jotka kuuluvat 2-oksoglutaraattidioksygenaasien entsyymiperheeseen ja tarvitsevat happea reaktioonsa. 4-hydroksiproliinitähteiden on kauan tiedetty stabiloivan kollageeninrakenteen, kun taas 3-hydroksiproliinitähteiden merkitys on selvinnyt vasta viime vuosina. Mutaatiot P3H1-isoentsyymiä koodittavassa geenissä ja sen seurauksena yhden ainoan 3-hydroksiproliinitähteen puuttuminen kollageenissa I johtavat vaikeaan luustosairauteen, osteogenesis imperfectaan. Tässä väitöskirjassa ihmisen P3H:t tuotettiin rekombinanttiproteiineina. Tulokset paljastivat, että P3H2 ilmentyy erityisesti kudoksissa, joissa on paljon tyvikalvorakenteita ja että P3H2 hydroksyloi tehokkaasti kollageeni IV:n kaltaisia synteettisiä peptidejä. Lisäksi koiran munuaisten epiteelisoluihin pohjautuvaa in vitro-mallia käytettiin apuna tutkiessamme kollageeneja hydroksyloivien entsyymien ja kollageenin IV roolia tyvikalvon muodostumisessa sekä solujen polarisaatiossa. Kollageenia stabiloivan tehtävänsä lisäksi 4-hydroksiproliinilla on myös merkittävä rooli solujen vasteessa vähähappisille olosuhteille (hypoksia). Normaalissa happiosapaineessa (normoksia), hypoksiaindusoituvan tekijän (HIF) α-alayksikköön muodostuu HIF-P4H entsyymien katalysoimana kaksi 4-hydroksiproliinitähdettä, jotka kohdistavat α-alayksikön proteasomaaliseen hajotukseen. Hypoksiassa HIF-P4H:t eivät kykene toimimaan, jolloin α-alayksikkö säästyy hajotukselta, muodostaa kompleksin β-alayksikön kanssa ja sitoo transkriptiokofaktoreita. HIF-kompleksi kykenee tällöin lisäämään hypoksiassa tarvittavien geenien luentaa. Tänä päivänä tunnetaan kolme HIF α-alayksikköä, joista HIF-3α:sta tiedetään esiintyvän useita erilaisia silmukointimuotoja ja yhden näistä muodoista tiedetään toimivan negatiivisena säätelijänä hypoksiavasteessa. Tässä väitöskirjatyössä on tunnistettu neljä uutta HIF-3α:n silmukointimuotoa ja osoitettu että HIF-3α:n määrä kasvaa hypoksiassa HIF-1:n säätelemänä. Lisäksi sitoutumis- ja transkriptiokokeet paljastivat, että HIF-3α:n rooli hypoksiavasteessa on monimutkaisempi kuin aikaisemmin kuviteltiin.
16

The role of the oxygen sensors PHD2 and PHD3 in the response of macrophages to ischemia-induced inflammation

Beneke, Angelika 24 October 2016 (has links)
No description available.
17

Tissue expression and functional insights into HIF prolyl hydroxylase domain enzymes

Wijeyekoon, Jananath Bhathiya January 2013 (has links)
This research programme investigated the expression of prolyl hydroxylase (PHD) proteins in rodent tissues. The importance of PHD enzymes lies in their ability to render oxygen sensitivity to Hypoxia inducible factor (HIF), the principal mediator of intracellular oxygen homeostasis. The first part of this study focused on developing and validating anti-sera capable of detecting PHD proteins in rodent tissues. With these reagents, it was possible to assess the relative expression of each PHD protein in a number of different rat tissues. PHD2 was the most abundant isoform in all tissues studied. In contrast, an abundance of PHD1 was observed only in testis and skeletal muscle. A number of different tissue species of PHD3 were identified and their abundance was found to vary between different tissues. These observations provide further evidence of the principal role of PHD2 in regulating HIF in vivo, but also point towards additional roles for PHD1 and PHD3 in selected tissues. They highlight the potential for there being a complex interplay between different PHD enzymes which could, in the future, prove potential targets for therapeutic manipulation. This study also provides additional insights into the mechanisms underlying the phenotypes observed in PHD deletional mouse models which appear, in many cases, to be directly related to the abundance of a given PHD isoform. The emerging role of PHD3 as a promoter of sympathetic lineage apoptosis prompted further study of PHD3 expression in rat neuronal tissues. An abundance of PHD3 was demonstrated throughout the rat sympathetic nervous system, a finding which appeared at odds with its known role as a promoter of neuronal apoptosis and resulted in a series of collaborative studies which demonstrated a sympatho-adrenal phenotype in wild type compared to PHD3-/- mice. Further collaborative studies utilising wild type mice and those deleted of specific PHD isoforms, were carried out to assess the significance of the abundance of PHD3 and PHD1 noted here in rat hippocampus and testis respectively. While neither study demonstrated statistically significant phenotypes, these observations remain of interest and areas for future research.
18

A novel role for prolyl-hydroxylase 3 gene silencing in epithelial-to-mesenchymal-like transition

Place, Trenton Lane 01 December 2013 (has links)
The ability of cells to sense oxygen is a highly evolved process that facilitates adaptations to the local oxygen environment and is critical to energy homeostasis. In vertebrates, this process is largely controlled by three intracellular prolyl-4-hydroxylases (PHD 1-3). These related enzymes share the ability to hydroxylate the hypoxia-inducible transcription factor (HIF), and therefore control the transcription of genes involved in metabolism and vascular recruitment. However, it is becoming increasingly apparent that proline-4-hydroxylation controls much more than HIF signaling, with PHD3 emerging as the most unique and functionally diverse of the PHD isoforms. In fact, PHD3-mediated hydroxylation has recently been purported to function in such diverse roles as sympathetic neuronal and muscle development, sepsis, glycolytic metabolism, and cell fate. PHD3 expression is also highly distinct from that of the other PHD enzymes, and varies considerably between different cell types and oxygen concentrations. This thesis will specifically examine the role of PHD3 expression in cancer cells, with a focus on the mechanisms of PHD3 gene silencing. In the final chapters, I will examine the consequences of this silencing in cancer, and discuss the discovery of a novel role for PHD3 in epithelial-to-mesenchymal-like transition and cell migration.
19

Transcriptional and Post-Transcriptional Regulation of Synaptic Acetylcholinesterase in Skeletal Muscle

Ruiz, Carlos Ariel 20 March 2009 (has links)
myotubesProper muscle function depends upon the fine tuning of the different molecular components of the neuromuscular junction (NMJ). Synaptic acetylcholinesterase (AChE) is responsible for rapidly terminating neurotransmission. Neuroscientists in the field have elucidated many aspects of synaptic AChE structure, function, and localization during the last 75 years. Nevertheless, how the enzyme is regulated and targeted to the NMJ is not completely understood. In skeletal muscle the synaptic AChE form derives from two separate genes encoding the catalytic and the collagenic tail (ColQ) subunits respectively. ColQ-AChE expression is regulated by muscle activity; however, how this regulation takes place remains poorly understood. We found that over or down-regulation of ColQ is sufficient to change the levels of AChE activity by promoting assembly of higher order oligomeric forms including the collagen-tailed forms. Furthermore, when peptides containing the Proline Rich Attachment Domain (PRAD), the region of ColQ that interacts with the AChE, are fed to muscle cells or cell lines expressing AChE, they are taken up by the cells and retrogradely transported to the endoplasmic reticulum (ER)/Golgi network where they induce assembly of newly synthesize AChE into tetramers. This results in an increase, as a consequence, in total cell associated AChE activity and active tetramer secretion, making synthetic PRAD peptides potential candidates for the treatment of organophosphate pesticides and nerve gas poisoning. To study the developmental regulation of ColQ-AChE we determined the levels of ColQ and ColQ mRNA in primary quail muscle cells in culture and as a function of muscle activity. Surprisingly, we found dissociation between transcription and translation of ColQ from its assembly into ColQ-AChE indicating the importance of posttranslational controls in the regulation of AChE folding and assembly. Furthermore, we found that the vast majority of the ColQ molecules in QMCs are not assembled into ColQ-AChE, suggesting that they can have alternative function(s). Finally, we found that the levels of ER molecular chaperones calnexin, calreticulin, and particularly protein disulfide isomerase are regulated by muscle activity and they correlate with the levels of ColQ-AChE. More importantly, our results suggest that newly synthesized proteins compete for chaperone assistance during the folding process.
20

The Biochemistry and Physiology of Peptidases

Lone, Anna Mari January 2012 (has links)
Peptidases regulate important physiological processes by controlling levels of bioactive peptides and occasionally through noncatalytic processes. This thesis presents a study of prolyl endopeptidase-like (PREPL), which is a peptidase involved in several human deletion syndromes, including hypotonia-cystinuria syndrome (HCS). Phenotypes tentatively attributed to PREPL deletion include hypotonia and decreased growth hormone (GH) levels. However, little is known about the mechanisms by which PREPL deletion causes these phenotypes. To better understand PREPL catalytic activity, we used an activity-based protein profiling fluorescence polarization screen to identify the first specific PREPL inhibitors. We proceeded to demonstrate the activity of these inhibitors in cells and discovered several classes of cell-active PREPL inhibitors. Further, one of these inhibitors, 1-isobutyl-3-oxo-3,5,6,7-tetrahydro-2H-cyclopenta[c]pyridine-4-carbonitrile, was able to enter mouse brains. To characterize PREPL substrate specificity, we performed several substrate profiling experiments, but no substrates could be identified, in line with reports from other groups who used related approaches to attempt to identify PREPL substrates. To characterize any noncatalytic functions of PREPL, we used an affinity purification-mass spectrometry approach (AP-MS) to search for any protein-protein interactions of PREPL. We identified brain-expressed X-linked 2 (BEX2) as a novel interactor of PREPL, and confirmed this interaction by immunoblot. Several other proteins identified in the AP-MS experiment, including several members of the STRIPAK complex are being further investigated for possible PREPL interaction. To determine whether HCS phenotypes are in fact due to PREPL deletion and to delineate the molecular pathways involved, we generated a conditional PREPL knockout mouse. These mice were visibly smaller than wildtypes and growth curve analysis verified that from week three of life, there was a significant difference in weight between wildtype and knockout mice. Initial surface righting task experiments also indicate that PREPL knockout pups may have a hypotonia phenotype. In summary, we have developed several new tools for studying PREPL catalytic and noncatalytic function, demonstrated that PREPL deletion causes a GH-related growth deficiency and possible hypotonia and thus moved several steps closer to understanding the molecular mechanisms underlying PREPL deletion phenotypes. / Chemistry and Chemical Biology

Page generated in 0.0319 seconds