• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of exploration in a dynamic geometry environment on students' concept of proof /

Lee, Man-sang, Arthur. January 1996 (has links)
Thesis (M. Ed.)--University of Hong Kong, 1996. / Includes bibliographical references (leaf 93-96).
2

Impact of exploration in a dynamic geometry environment on students' concept of proof

Lee, Man-sang, Arthur. January 1996 (has links)
Thesis (M.Ed.)--University of Hong Kong, 1996. / Includes bibliographical references (leaves 93-96). Also available in print.
3

Investigation Of Secondary School Students

Cicek, Ibrahim 01 December 2004 (has links) (PDF)
The purpose of the study was to investigate secondary school students&rsquo / performance on proof and attitude towards proof in geometry. The research was conducted on 367 10th grade students. The numbers of subjects were 94, 96, 90 and 87 from General High Schools (GHS), Anatolian High Schools (AHS), Science High Schools (SHS) and Private High Schools (PHS) respectively. The number of girls and boys were 142 and 225 respectively. To obtain the data of this study, the following measuring instruments were utilized: 1.Proof Performance in Geometry Test (PPGT) / 2.Proof Attitude Scale in Geometry (PASG). They were developed by researchers. The results indicated that: 1.There were statistically significant differences among the mean scores of students enrolled in different school types with respect to performance on proof in geometry / 2.There was no statistically significant difference between the mean scores of boys and girls with respect to performance on proof and attitude towards proof in geometry / 3.There were no statistically significant differences among the mean scores of students enrolled in different school types with respect to attitude towards proof in geometry / 4.There was statistically significant correlation between secondary school students&rsquo / performances on proof and attitude towards proof in geometry / 5.While students in SHS got the highest scores from each question, students in GHS got the lowest scores / 6. While most students in SHS perceived themselves as successful in geometry, most students in GHS perceived themselves unsuccessful.
4

Mechanical linkages, dynamic geometry software, and argumentation: supporting a classroom culture of mathematical proof

Vincent, Jill Loris Unknown Date (has links) (PDF)
Euclidean geometry and geometric proof have occupied a central place in mathematics education from classical Greek society through to twentieth century Western culture. It is proof which sets mathematics apart from the empirical sciences, and forms the foundation of our mathematical knowledge, yet students often fail to understand the purpose of proof, they are unable to construct proofs, and instead readily accept empirical evidence or the authority of textbooks or teachers. (For complete abstract open document)
5

GeoGebraTUTOR : développement d’un système tutoriel autonome pour l’accompagnement d’élèves en situation de résolution de problèmes de démonstration en géométrie plane et genèse d’un espace de travail géométrique idoine

Tessier-Baillargeon, Michèle 07 1900 (has links)
Travaux d'études doctorales réalisées conjointement avec les travaux de recherches doctorales de Nicolas Leduc, étudiant au doctorat en génie informatique à l'École Polytechnique de Montréal. / Cette thèse vise le développement de GeoGebraTUTOR (GGBT), un espace de travail géométrique (ETG) qui intègre un système tutoriel pour l’obtention d’un milieu respectueux du raisonnement idiosyncratique de l’élève. Le raisonnement mathématique, comme l’apprentissage, ne s’exerce pas de manière linéaire, il repose sur un remaniement conceptuel continu. Il est donc peu étonnant qu’une approche séquentielle inflexible pour l’exercice de la démonstration en géométrie soit source d’embûches. Les systèmes tutoriels existants pour l’exercice de la démonstration en géométrie offrent une variété d’outils sans pour autant soulager l’élève de cette rigidité. Le design multidisciplinaire de GGBT repose sur une conception dans l’usage qui articule plusieurs cycles de recherche et de développement successifs. Cette méthodologie itérative et anthropocentrique confère à GGBT une intelligence qui nait d’une convergence d’analyses a priori et a posteriori successives. Cette thèse concerne les deux premiers cycles du développement de GGBT. La première phase du développement implique l’élaboration a priori d’un système capable de recevoir et d’analyser les démarches singulières de démonstration des élèves en fonction de solutions expertes préalablement identifiées. Ce premier prototype de GGBT est conçu en fonction d’une analyse de la relation didactique entre un enseignant réel et l’élève, et la relation didactique simulée entre un agent tuteur virtuel et ce même élève. Cette analyse théorique a priori établit un cadre conceptuel liminaire qui vise à encadrer la création d’un ETG idoine permettant à l’apprenti géomètre de se livrer à son travail mathématique. Cette version initiale de GGBT est mise à l’essai par des élèves réels guidés par leur enseignant ordinaire. Leurs interactions sont ensuite étudiées pour modéliser et implémenter un premier système tutoriel autonome à l’image des échanges témoignant du contrat didactique observé. Le second cycle de développement s’amorce avec la modélisation et la programmation d’une structure tutorielle autonome et d’une interface renouvelée, qui contribuent conjointement au design a priori d’un espace de travail géométrique. La deuxième version ainsi obtenue est également testée en contexte de classe réel. Cette fois, l’exercice empirique vise la validation de la gestion des messages par le système tutoriel et l’exploration des raisonnements instrumentés dans une perspective de précision du travail géométrique possible à l’interface de l’ETG qu’est GGBT. Ce parcours doctoral se clôt par l’exploration d’avenues de recherche potentielles pour la poursuite du développement et du raffinement de GGBT. / This thesis aims at modeling GeoGebraTUTOR, a geometrical workspace that relies on the works of a tutorial system for the definition of a milieu respectful of the student’s idiosyncratic reasoning. Mathematical reasoning, like learning, does not evolve in a linear fashion. It relies on continuous conceptual reorganizations. Therefore, it is little wonder that a linear and inflexible approach for the exercise of geometrical proof creates difficulties. Existing tutorial systems for the solving of geometrical proof problems offer a variety of tools without relieving the student of this rigidity. GGBT’s multidisciplinary design relies on a design in use approach that articulates a series of research and development cycles. This iterative anthropocentric methodology provides GGBT with an intelligence resulting from the confrontation of successive a priori and a posteriori analyses. This thesis is rooted in GGBT’s two first development cycles. The first phase of design implies the planning of a system able to take in singular student proofs and analyze their value compared to previously implemented expert answers. This first GGBT prototype is designed according to an analysis of the didactical relationship between the teacher and the student as well as the relationship that takes place between the student and the tutor agent who evolves within the didactical milieu. This a priori analysis establishes theoretical guidelines, which will steer the design of a geometrical workspace that enables the learning geometer to accomplish his mathematical work. A first GGBT prototype is put to the test with real students assisted by their regular teacher. Their interactions are then studied in order to model and implement a first self-governing tutorial system according to the dialogues reflecting the observed didactical contract. The second design cycle begins with the modeling and programming of a tutorial structure and of a renewed interface, both of which contribute to the planning of a geometrical workspace. This second prototype is also tested in a real class environment, although this time the empirical exercise aims, on the one hand, at validating the management of the tutor’s help messages, and on the other hand at exploring the student’s instrumented reasoning to specify the mathematical activity made possible by the GGBT geometrical workspace. This doctoral endeavor ends with the exploration of potential research avenues for the ongoing design and refining of GGBT.

Page generated in 0.054 seconds