1 |
A simulation study of steam and steam-propane injection using a novel smart horizontal producer to enhance oil productionSandoval Munoz, Jorge Eduardo 15 November 2004 (has links)
A 3D 8-component thermal compositional simulation study has been performed to evaluate the merits of steam-propane injection and a novel vertical-smart horizontal well system for the Lombardi reservoir in the San Ardo field, California. The novel well system consists of a vertical steam injector and a horizontal producer, whose horizontal section is fully open initially, and after steam breakthrough, only one-third (heel-end) is kept open.
A 16x16x20 Cartesian model was used that represented a quarter of a typical 10acre 9-spot inverted steamflood pattern in the field. The prediction cases studied assume prior natural depletion to reservoir pressure of about 415 psia. Main results of the simulation study may be summarized as follows.
First, under steam injection, oil recovery is significantly higher with the novel vertical-smart horizontal well system (45.5-58.7% OOIP at 150-300 BPDCWE) compared to the vertical well system (33.6-32.2% OOIP at 150-300 BPDCWE). Second, oil recovery increases with steam injection rate in the vertical-smart horizontal well system but appears to reach a maximum at about 150 BPDCWE in the vertical well system (due to severe bypassing of oil). Third, under steam-propane injection, oil recovery for the vertical-smart horizontal well system increases to 46.1% OOIP at 150 BPDCWE but decreases to 51.6% OOIP at 300 PDCWE due to earlier steam breakthrough that resulted in reduced sweep efficiency. Fourth, for the vertical well system, steam-propane injection results in an increase of oil recovery to 35.4-32.6% OOIP at 150-300 BPDCWE. Fifth, with steam-propane injection, for both well systems, oil production acceleration increases with lower injection rates. Sixth, the second oil production peak in the vertical-smart horizontal well system is accelerated by 24-50% in time for 150-300 BPDCWE compared to that with pure steam injection.
|
2 |
Experimental studies of steam and steam-propane injection using a novel smart horizontal producer to enhance oil production in the San Ardo fieldRivero Diaz, Jose Antonio 17 September 2007 (has links)
A 16ÃÂ16ÃÂ5.6 in. scaled, three-dimensional, physical model of a quarter of a 9-spot
pattern was constructed to study the application of two processes designed to improve the
efficiency of steam injection. The first process to be tested is the use of propane as a
steam additive with the purpose of increasing recovery and accelerating oil production.
The second process involves the use of a novel production configuration that makes use
of a vertical injector and a smart horizontal producer in an attempt to mitigate the effects
of steam override.
The experimental model was scaled using the conditions in the San Ardo field in
California and crude oil from the same field was used for the tests. Superheated steam at
190 â 200úC was injected at 48 cm3/min (cold water equivalent) while maintaining the
flowing pressures in the production wells at 50 psig. Liquid samples from each producer
in the model were collected and treated to break emulsion and analyzed to determine
water and oil volumes.
Two different production configurations were tested: (1) a vertical well system with a
vertical injector and three vertical producers and (2) a vertical injector-smart horizontal
well system that consisted of a vertical injector and a smart horizontal producer divided
into three sections. Runs were conducted using pure steam injection and steam-propane
injection in the two well configurations.
Experimental results indicated the following. First, for the vertical configuration, the
addition of propane accelerated oil production by 53% and increased ultimate recovery by an additional 7% of the original oil in place when compared to pure steam injection.
Second, the implementation of the smart horizontal system increased ultimate oil
recovery when compared to the recovery obtained by employing the conventional vertical
well system (49% versus 42% of the OOIP).
|
Page generated in 0.076 seconds