• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automorphismes des groupes d'Artin à angles droits

Toinet, Emmanuel 11 May 2012 (has links) (PDF)
Cette thèse a pour objet l'étude des automorphismes des groupes d'Artin à angles droits. Etant donné un graphe simple fini $\Gamma$, le groupe d'Artin à angles droits $G_\Gamma$ associé à $\Gamma$ est le groupe défini par la présentation dont les générateurs sont les sommets de $\Gamma$, et dont les relateurs sont les commutateurs $[v,w]$, où {$v$,$w$} est une paire de sommets adjacents. Le premier chapitre est conçu comme une introduction générale à la théorie des groupes d'Artin à angles droits et de leurs automorphismes. Dans un deuxième chapitre, on démontre que tout sous-groupe sous-normal d'indice une puissance de $p$ d'un groupe d'Artin à angles droits est résiduellement $p$-séparable. Comme application de ce résultat, on montre que tout groupe d'Artin à angles droits est résiduellement séparable dans la classe des groupes nilpotents sans torsion. Une autre application de ce résultat est que le groupe des automorphismes extérieurs d'un groupe d'Artin à angles droits est virtuellement résiduellement $p$-fini. On montre également que le groupe de Torelli d'un groupe d'Artin à angles droits est résiduellement nilpotent sans torsion, et, par suite, résiduellement $p$-fini et bi-ordonnable. Dans un troisième chapitre, on établit une présentation du sous-groupe $Conj(G_\Gamma)$ de $Aut(G_\Gamma)$ formé des automorphismes qui envoient chaque générateur sur un conjugué de lui-même.
2

Automorphisms of right-angled Artin groups / Automorphismes des groupes d'Artin à angles droits

Toinet, Emmanuel 11 May 2012 (has links)
Cette thèse a pour objet l’étude des automorphismes des groupes d’Artin à angles droits. Etant donné un graphe simple fini G, le groupe d’Artin à angles droits GG associé à G est le groupe défini par la présentation dont les générateurs sont les sommets de G, et dont les relateurs sont les commutateurs [v,w], où {v,w} est une paire de sommets adjacents. Le premier chapitre est conçu comme une introduction générale à la théorie des groupes d’Artin à angles droits et de leurs automorphismes. Dans un deuxième chapitre, on démontre que tout sous-groupe sous-normal d’indice une puissance de p d’un groupe d’Artin à angles droits est résiduellement p-séparable. Comme application de ce résultat, on montre que tout groupe d’Artin à angles droits est résiduellement séparable dans la classe des groupes nilpotents sans torsion. Une autre application de ce résultat est que le groupe des automorphismes extérieurs d’un groupe d’Artin à angles droits est virtuellement résiduellement p-fini. On montre également que le groupe de Torelli d’un groupe d’Artin à angles droits est résiduellement nilpotent sans torsion, et, par suite, résiduellement p-fini et bi-ordonnable. Dans un troisième chapitre, on établit une présentation du sous-groupe Conj(GG) deAut(GG) formé des automorphismes qui envoient chaque générateur sur un conjugué de lui-même / The purpose of this thesis is to study the automorphisms of right-angled Artin groups. Given a finite simplicial graph G, the right-angled Artin group GG associated to G is the group defined by the presentation whose generators are the vertices of G, and whose relators are commuta-tors of pairs of adjacent vertices. The first chapter is intended as a general introduction to the theory of right-angled Artin groups and their automor-phisms. In a second chapter, we prove that every subnormal subgroup ofp-power index in a right-angled Artin group is conjugacy p-separable. As an application, we prove that every right-angled Artin group is conjugacy separable in the class of torsion-free nilpotent groups. As another applica-tion, we prove that the outer automorphism group of a right-angled Artin group is virtually residually p-finite. We also prove that the Torelli group ofa right-angled Artin group is residually torsion-free nilpotent, hence residu-ally p-finite and bi-orderable. In a third chapter, we give a presentation of the subgroup Conj(GG) of Aut(GG) consisting of the automorphisms thats end each generator to a conjugate of itself

Page generated in 0.1218 seconds