• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 7
  • Tagged with
  • 23
  • 15
  • 11
  • 11
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fluctuations de densité électronique à petite échelle dans un propulseur à effet Hall, investigué par la méthode de diffusion collective

Tsikata, Sedina 19 November 2009 (has links) (PDF)
Les oscillations dans le plasma d'un propulseur à effet Hall sont susceptibles de provoquer le transport anormal à travers des lignes du champ magnétique. La théorie cinétique linéaire montre qu'en particulier certaines oscillations, de fréquence de l'ordre du mégahertz et de longueur d'onde millimétrique, peuvent jouer un rôle important dans le transport anormal. Les échelles caractéristiques de ces fluctuations ne sont pas détectables par des outils standards comme les sondes. Ce travail décrit pour la première fois l'utilisation d'un diagnostic de diffusion collective (PRAXIS) conçu pour l'étude du plasma du propulseur, qui a mené à l'identification des modes instables dans le plasma. Deux modes hautes fréquences ont été identifiés, se propageant dans les directions azimutale et axiale, avec des longueurs d'onde millimétriques et des fréquences de l'ordre du mégahertz. Les directions de propagation et les ouvertures angulaires de ces modes ont été déterminées. Le mode azimutal, identifié dans la théorie comme agent principal du transport, possède des composantes anti-parallèles au champ magnétique et parallèles au champ électrique et se propage dans une ouverture angulaire très restreinte. Le mode axial montre des caractéristiques liées à la vitesse et la divergence du faisceau d'ions. Le niveau de fluctuation de la densité est associé à une grande amplitude du champ électrique fluctuant. Les résultats des expériences sont en accord avec les prévisions théoriques et apportent de nouvelles informations, permettant ainsi d'améliorer et de développer des modèles pour les deux modes.
2

Un éjecteur haute fréquence de matières granulaires / High frquency ejector for granular solids

Jensen, Michael January 2012 (has links)
This study addresses the design challenges of a proposed Micro Pulse Detonation Engine (MPDE), a micropropulsion system devised to meet the needs of smallsats . It focusses in particular on one subsystem of the proposed MPDE, the explosive delivery system, hereafter refered to as an ejector of granular materials. This study has three major goals: (1) evaluate different ways of building ejectors of granular materials in space, (2) propose a design for an ejector of granular materials that could eventually be used to achieve ejection rates of 10 kHz, and (3) evaluate the new designs performance. We thus begin by reviewing devices that have been built or proposed in the past for ejecting granular materials. Finding them lacking for the objectives of the present project, we evaluate several other different ways of achieving granule ejection in the zero gravity environment of space, based on other previous work with granular materials generally. We conclude that the artificial gravity induced within a spinning apparatus provides for many of the design requirements in a way that none of the other options do. We then go on to discuss the novel challenges a rotating ejector of solids faces, and propose a way of overcoming them. We present the design of the simplest concept we could come up with to achieve controlled ejection from the rotating device. Finally, the performance of this system is evaluated experimentally, using glass ballotini as the granular material. We find that we are able to demonstrate an ejection rate of 50 ejections per second with the device rotating at 10 rotations per second, with the possibility of attaining even higher ejection rates at higher rotational velocities. We conclude that this device demonstrates that there is a very great likelihood that future designs based closely on it will be able to achieve the desired 10 kHz ejection rate, which is the highest ejection rate at which the proposed MPDE can operate while remaining in the higher efficiency vacuum mode.
3

Investigation of magnetized radio frequency plasma sources for electric space propulsion / Sources plasma RF magnétisées : applications à la propulsion spatiale

Gerst, Jan Dennis 08 November 2013 (has links)
Le propulseur PEGASES (Plasma Propulsion with Electronegative Gases) est un nouveau type de propulseur électrique pour la propulsion spatiale. Il utilise des ions négatifs et positifs créés par une décharge radiofréquence à couplage inductif pour générer la poussée. L’accélération électrostatique des ions est assurée par un ensemble de grilles polarisées. Un filtre magnétique est utilisé pour augmenter la quantité d'ions négatifs dans la cavité du propulseur. Le propulseur PEGASES est non seulement une source qui permet de créer un plasma d'ions négatifs à forte densité, et même un plasma d'ion-ion, mais il peut également être utilisé comme un propulseur ionique classique. Cela signifie qu'un plasma est créé dans un gaz électropositif (e.g. Xe) et que les ions positifs sont extraits et accélérés. Dans ce cas, il est nécessaire de neutraliser le plasma derrière la zone d'accélération, comme dans d'autres propulseurs ioniques. Les performances du propulseur PEGASES ont été étudiées principalement dans du xénon afin de comparer les résultats obtenus avec les propulseurs ioniques de type RIT. Le propulseur a été étudié à l'aide d'une série de sondes telles qu’une sonde de Langmuir, une sonde plane, une sonde capacitive et un RPA (pour Analyseur à Champ Retardateur). De plus, une sonde en champs croisés ExB a été développée pour mesurer la vitesse des ions quittant le propulseur ainsi que la fraction des différentes espèces ioniques présentes dans le plasma. / The PEGASES thruster (Plasma Propulsion with Electronegative Gases) is a novel type of electric thruster for space propulsion. It uses negative and positive ions produced by an inductively coupled radio frequency discharge to create the thrust by electrostatically accelerating the ions through a set of grids. A magnetic filter is used to increase the amount of negative ions in the cavity of the thruster. The PEGASES thruster is not only a source to create a strongly negative ion plasma or even an ion-ion plasma but it can also be used as a classical ion thruster. This means that a plasma is created and only the positive ions are extracted and accelerated making it necessary to neutralize the plasma behind the acceleration stage like in other ion thrusters. The performances of the PEGASES thruster have been investigated mainly in xenon in order to compare the obtained results with RIT-type ion thrusters. The thruster has been investigated with the help of a variety of probes such as a Langmuir probe, a planar probe, a capacitive probe and a RPA (Retarding Potential Analyzer). In addition, an ExB probe has been developed to measure the velocity of the ions leaving the thruster and to differentiate between the ion species present in the plasma.
4

Développement d'un modèle de transfert radiatif 3D adapté au calcul de la signature d'un jet de moteur-fusée dans l'ultraviolet

Baudoux, Pierre-Emmanuel 27 March 2002 (has links) (PDF)
Cette Thèse est consacrée à la modélisation de la signature dans l'ultraviolet "Solar Blind" d'un jet de propulseur à chargement solide composite aluminisé. Le rayonnement ultraviolet émis par ce type de jet provient de l'émission de chimiluminescence des espèces gazeuses et de l'absorption et de la diffusion des particules d'alumine. Afin de prendre en compte la diffusion qui est à l'origine d'un couplage entre les directions de propagation du rayonnement, un modèle de transfert radiatif 3D adapté aux problèmes atmosphériques, est étendu aux jets : la méthode des ordonnées discrètes et des harmoniques sphériques (SHDOM). Les harmoniques sphériques permettent de réduire le temps de calcul de l'intégrale de diffusion par rapport à une méthode des ordonnées discrètes classique, tandis que l'équation de transfert radiatif est intégrée le long des ordonnées discrètes. Le modèle SHDOM, développé à l'origine pour les milieux 3D nuageux, est adapté de façon à prendre en compte les spécificités des jets de moteurs-fusées (composition et géométrie) dans l'ultraviolet. L'émission de chimiluminescence des gaz, attribuée à la recombinaison radiative de CO et de O, est évaluée à partir de mesures issues de la littérature. Par ailleurs, les propriétés optiques des particules sont étudiées en fonction de leur granulométrie et de leur indice complexe de réfraction. Une synthèse bibliographique permet d'estimer la valeur de ces paramètres. Afin de mettre en évidence l'influence des particules sur la signature des jets, des cas tests sont effectués dans des milieux cylindriques représentatifs des jets. Enfin, des comparaisons entre des calculs et des mesures de signatures sont réalisées.
5

Modélisation dynamique et commande d'un propulseur naval

Vonnet, Matthieu 09 December 2008 (has links) (PDF)
Ce mémoire de thèse porte sur la modélisation dynamique et la commande en poussée des propulseurs navals. Un état de l'art de la modélisation des propulseurs électriques est d'abord présenté. Un modèle quasi-statique de propulseur est étudié et identifié expérimentalement en employant le bassin d'essais du Laboratoire IREENA. La nécessité d'un modèle dynamique d'hélice plus précis est mise en évidence. Deux approches sont alors envisagées. La première consiste à modéliser physiquement une hélice marine. Les théories des moments et la théorie des éléments de pale sont rappelées, puis la théorie dynamique du moment linéaire des hélices, développée dans un cadre rigoureux, est exposée. Un modèle dynamique d'hélice est déduit de cette dernière théorie et est étudié. La modélisation dynamique de l'hélice est ensuite envisagée par une approche fréquentielle, mieux adaptée à la commande. Des méthodes d'identification sans mesure hydrodynamique sont proposées et validées expérimentalement. La commande en poussée des propulseurs est abordée dans la dernière partie. Des méthodes de commande existantes sont brièvement étudiées et testées expérimentalement. Les tests réalisés mettent en évidence la nécessité de disposer d'une méthode de commande plus robuste vis-à-vis de la ventilation de l'hélice, qui occasionne des pertes de poussée importantes. Une nouvelle loi de commande, s'appuyant sur un observateur du couple hydrodynamique et sur le modèle dynamique de l'hélice, est finalement proposée. Des résultats expérimentaux, attestant la précision de la commande proposée, sont présentés.
6

Développement d'outils d'optimisation dédiés aux circuits magnétiques des propulseurs à effet Hall / Optimization tools dedicated to Hall effect thrusters magnetic circuits

Rossi, Alberto 27 April 2017 (has links)
Aujourd’hui les propulseurs à effet Hall ont gagné une position dominante dans le marché des propulseurs électriques spatiales. Ce grand succès est du surtout à leur simplicité de réalisation (par rapport aux autres typologies des propulseurs) et à leur efficacité (par rapport aux propulseurs chimiques traditionnels). Les propulseurs à effet Hall sont aujourd’hui utilisés sur un très grand nombre des plateformes satellitaires (surtout pour les télécommunications). Les composants principales d’un propulseur à effet Hall sont : le circuit magnétique, le canal plasma, l’anode (placé au fond du canal plasma avec injecteur du gaz) et la cathode (placée à l’extérieur du canal plasma). Le fonctionnement d’un propulseur à effet Hall est basé sur la génération d’un champ électrique axial (généré entre l’anode et la cathode) et d’un champ magnétique radial (perpendiculaires entre eux). Le champ magnétique a le rôle de former une zone de très forte concentration électronique (il emprisonne les électrons générés par la cathode) pour permettre aux atomes neutres du gaz de se ioniser. Le champ électrique a le rôle d’accélérer les ions vers l’extérieur du canal. Cette accélération génère la poussée. Le champ magnétique joue un rôle crucial dans le fonctionnement d’un propulseur à effet Hall. La forme du champ magnétique impacte sur les performances propulsifs et sur l’érosion du propulseurs. La topologie magnétique classique des propulseurs à effet Hall n’a subi presque pas des changements depuis les années de développement de cette technologie parce qu’elle garanti des performances propulsifs assez satisfaisantes. Aujourd’hui, avec les nouvelles exigences propulsifs, il y a une très forte nécessité des moteurs avec une durée de vie plus longue. Des nouvelles topologie magnétique innovante sont proposés aujourd’hui comme par exemple le "Magnetique-Shielding" ou le "Wall-Less" . Ces topologies magnétique bouleverse complètement la topologie magnétique classique (en gardant des performances propulsif satisfaisantes) pour protéger le moteur de l’érosion du plasma. Dans cette thèse une autre approche a été adopté. Nous avons pensé d’utiliser une topologie magnétique classique et de déplacer les parties du circuit magnétique attaquées par l’érosion vers des zones moins dangereuses. Nous avons agit sur la forme du circuit magnétique et pas sur la forme de la topologie magnétique pour garder les même performances propulsifs de la topologie magnétique classique. L’objectif de la thèse était de créer des outils pour le design et l’optimisation des circuits magnétiques des propulseurs à effet Hall. Un algorithme nommé ATOP a été créé dans l’équipe de recherche GREM3 du laboratoire LAPLACE de Toulouse. Cette thèse a contribué à la création de la section d’optimisation paramétrique (ATOPPO) et d’une section d’optimisation topologique basée sur les algorithmes génétiques (ATOPTOga) de l’algorithme ATOP. Les algorithme conçues dans cette thèse permettent d’optimiser des propulseurs existants (en terme de forme, masse et courant) ou de concevoir des nouveaux propulseurs (nécessité de concevoir un nouveau propulseur capable de reproduire une topologie magnétique précise). Les algorithmes développées ont démontrés leur efficacité à travers leur application sur un propulseur réel, le PPS-1350-E® de SAFRAN. Ce propulseur a été optimisé en terme de masse et de courant bobines (minimisation de la masse et du courant bobines). Les algorithmes développés ont démontré donc leur efficacité comme instrument d’optimisation et de design. Ces deux algorithmes ont été utilisé pour le design d’un circuit magnétique innovant qui a comme objectif de réduire l’érosion du moteur. Les résultats de ce processus de design ont amené à la réalisation et à la construction d’un prototype qui possède la même topologie magnétique du propulseur PPS- 1350-E® commercialisé par SAFRAN mais avec une circuit magnétique de forme différente. / Nowadays, two types of space propulsion engines exist: the most common ones are the chemical propulsion engines which provide high thrust impulses allowing fast orbit transfers. But this technology requires a large amount of propellant and is not suitable for interplanetary displacements, whose propellant mass requirements are too high. The second type of propulsion engine is based on electrical propulsion that provide very low but continuous thrust, resulting in huge propellant savings at the cost of longer spacecraft transfer time. The main advantage of electric thrusters lies in their highly efficient utilization of propellant mass. The corresponding reduction in necessary propellant supply makes it possible to board a greater portion of useful payload possible. Hall thruster belongs to the electric spacecraft engines typology and it is constituted of a cylindrical plasma channel, an interior anode, an external cathode and a magnetic circuit that generates a primarily radial magnetic field across the plasma channel. The magnetic circuit of a Hall effect thruster must generate a specific electromagnetic distribution inside and near the outlet of the plasma channel. In a Hall Effect thruster the magnetic circuit constitutes more than half of the whole thruster. Consequently the design of this magnetic circuit must be optimized in order to minimize the embedded mass. The main components of this circuit are the coils which produce the magnetic and ferromagnetic parts which guide the and to shape the density. Usually the magnetic circuit includes four (or more) external coils located around the exterior radius of the plasma channel and one internal coil around the interior radius of the plasma channel. All the coils are supplied by the same DC. Two coils located at the rear of the plasma channel can be also used to perform the magnetic topography. The first objective of the design process of this type of structure is to obtain a specific magnetic topography in the thruster channel with given magnetic field radial component values and a certain inclination of the corresponding field lines. By considering nowadays the requirements in terms of lifetime new specifications concerning in particular the erosion of ceramic wall have to be taken into account.This weakness has its origins in plasma-surface interaction inside the discharge chamber. Thus, to solve this problem it has been proposed to move the ionization zone outside the thruster channel in order to avoid contact between the ions and ceramic material. Thanks to new studies carried on the impact of magnetic topology, new magnetic configurations have been highlighted to improve the efficiency and reduce the erosion of the ceramic walls. The aim of this work is to develop tools for solving this inverse magnetostatic problem and to find new magnetic structures that are able to produce these new magnetic cartographies. Methods based on topological optimization have already been developed for these structures. The algorithm ATOPTO (Algorithm To Optimize Propulsion with Topology Optimization) has already demonstrated its efficiency. In this work we try to extend the scope of the algorithm ATOP by adding a new parametric optimization section called ATOPPO. The ATOP algorithm becomes a very versatile optimization tool for Hall Effect thruster magnetic circuits.
7

Modélisation et diagnostic d'un propulseur à effet Hall pour satellites : configuration magnétique et nouveaux concepts.

Boniface, Claude 24 February 2006 (has links) (PDF)
Le Propulseur à Effet Hall est un moteur sans grille, dans lequel un champ magnétique radial confine les électrons d'un plasma formé entre deux cylindres coaxiaux diélectriques. La chute de la conductivité électronique qui en résulte permet l'établissement d'un champ électrique axial pour extraire les ions. La relativement faible poussée (100 mN) et la forte impulsion spécifique (vitesse des ions éjectés de 20 km/s) rendent le propulseur bien adapté aux tâches de maintien sur orbite des satellites ou de petits transferts d'orbite.<br /> <br /> L'étude porte sur la modélisation des phénomènes physiques dans le propulseur associée à une étude expérimentale, plus limitée, et destinée à valider ou compléter les modèles. La modélisation est basée sur une description des phénomènes de transport des particules (électrons, ions, neutres) en champs électrique et magnétique croisés. Un modèle développé au CPAT a été complété et utilisé pour chercher les conditions optimales de fonctionnement, en particulier l'étude de la configuration magnétique des moteurs à Effet Hall existants. De plus, nous avons développé un modèle pour étudier de nouveaux concepts de moteurs à Effet Hall, en particulier un moteur à Effet Hall à Double Etage, dans lequel on cherche à contrôler séparément la génération du plasma et l'accélération des ions. <br /> La partie expérimentale a consisté à utiliser des techniques de diagnostics plasma (interférométrie de Fabry-Pérot) permettant de mesurer la distribution du champ électrique dans le système, résultant de la présence du plasma et des tensions appliquées aux électrodes. Les mesures ont été effectuées sur le moyen d'essai PIVOINE installé à Orléans. La confrontation systématique des résultats expérimentaux et de simulation a permis de mieux définir les possibilités et les limites du modèle et d'en améliorer ses capacités prédictives.
8

MODELISATION D'UN PROPULSEUR A PLASMA STATIONNAIRE POUR SATELLITES

Garrigues, Laurent 28 October 1998 (has links) (PDF)
Les Propulseurs à Plasma Stationnaire (SPT) sont des moteurs de petites tailles présentant des propriétés intéressantes pour les changements d'orbite basse et les corrections Nord-Sud et Est-Ouest des satellites. Le principe du fonctionnement d'un tel propulseur est basé sur la création d'un plasma hors équilibre stationnaire sous champ magnétique perpendiculaire à l'axe de la décharge qui conduit à la génération d'un faisceau d'ions utilisé pour propulser le satellite. Ce travail est d'autant plus d'actualité qu'un projet français doit permettre le lancement en 2000 du satellite STENTOR avec à son bord des propulseurs de type SPT. Le but de cette thèse est de mieux comprendre les phénomènes physiques se produisant dans les SPT à l'aide de modèles numériques. Un premier aspect a consisté à élaborer un modèle particulaire Monte Carlo capable d'apporter des éclaircissements sur le transport des électrons dans le moteur au travers d'une approche microscopique. Nous avons été conduits, dans un deuxième temps, à nous intéresser aux caractéristiques électriques (oscillations basses fréquences du courant de décharge, évolution du plasma) et aux performances du moteur (poussée, impulsion spécifique et efficacité). Pour cela, nous avons mis au point un modèle unidimensionnel, quasineutre, transitoire, auto-cohérent (approches fluide et hybride) permettant de suivre l'évolution de la décharge dans le canal. En formulant certaines hypothèses simplificatrices, nous avons pu conserver un temps de calcul assez faible pour pouvoir réaliser des études complètes et variées sur l'influence des paramètres extérieurs (débit de gaz injecté, potentiel appliqué, forme et valeur du champ magnétique) sur les caractéristiques du propulseur. Les résultats obtenus sont qualitativement en accord avec les résultats expérimentaux et avec les résultats obtenus à l'aide d'autres modèles.
9

Optimisation de la configuration magnétique d'un propulseur à effet Hall par résolution du problème magnétostatique inverse

Vilamot, Raphaël 13 January 2012 (has links) (PDF)
Les travaux effectués lors de cette thèse portent sur l'optimisation de la configuration magnétique des propulseurs à effet Hall. Ceci regroupe deux objectifs: d'une part la réalisation d'un propulseur à effet Hall dont la topologie magnétique est entièrement paramétrable, ce qui constituera un outil précieux pour l'étude de l'impact du champ magnétique sur le fonctionnement du propulseur et d'autre part, l'étude de moyen de conception rationalisée de circuits magnétiques pour ces mêmes propulseurs. Le premier sujet a conduit à la réalisation du PPS-Flex, un propulseur proposant une structure de circuit magnétique innovante offrant un grand nombre de degrés de liberté en termes de réglage du champ magnétique produit. La deuxième thématique a quant à elle été abordée en s'appuyant sur des méthodes d'optimisation (paramétrique et topologique) permettant d'aboutir à un circuit magnétique optimal pour un ou plusieurs critères de conception (fidélité du champ magnétique généré, minimisation de la masse, du volume total, etc.)
10

Plasma discharge 2D modeling of a Hall thruster / Modélisation bidimensionnelle de la décharge plasma dans un propulseur de Hall

Croes, Vivien 24 October 2017 (has links)
Alors que les applications spatiales prennent une place de plus en plus cruciale dans nos vies, les coûts d'opération des satellites doivent être réduits. Ceci peut être obtenu par l'utilisation de systèmes de propulsion électriques, plus efficients que leurs homologues chimiques traditionnellement utilisés. Une des technologies de propulsion électrique la plus performante et la plus utilisée est le propulseur à effet Hall, toutefois ce système reste complexe et peu compris. En effet de nombreuses questions, concernant le transport anormal des électrons ou les interactions plasma/paroi, sont encore ouvertes.Les réponses à ces questions sont basées sur des mécanismes cinétiques et donc ne peuvent être résolues par des modèles fluides. De plus les caractéristiques géométriques et temporelles de ces mécanismes les rendent difficilement observables expérimentalement. Par conséquent nous avons, pour répondre à ces questions, développé un code cinétique bi-dimensionnel.Grâce à un modèle simplifié de propulseur à effet Hall, nous avons observé l'importance de l'instabilité de dérive électronique pour le transport anormal. Ensuite en utilisant un modèle réaliste de propulseur, nous avons pu étudier les effets des interactions plasma/paroi sur la décharge plasma. Nous avons également pu quantifier les effets intriqués des émissions électroniques secondaires et de l'instabilité de dérive sur le transport anormal. Par une étude paramétrique sur les émissions électroniques secondaires, nous avons pu identifier trois régimes de décharge plasma. Finalement l'impact des ergols alternatifs a pu être étudié en utilisant des processus collisionnels réalistes. / As space applications are increasingly crucial in our daily life, satellite operating costs need to be decreased. This can be achieved through the use of cost efficient electric propulsion systems. One of the most successful and competitive electric propulsion system is the Hall effect thruster, but this system is characterized by its complexity and remains poorly understood. Indeed some key questions, concerning electron anomalous transport or plasma/wall interactions, are still to be answered.Answers to both questions are based on kinetic mechanisms, and thus cannot be solved with fluid models. Furthermore the temporal and geometrical scales of these mechanisms make them difficult to be experimentally measured. Consequently we chose, in order to answer those questions, to develop a bi-dimensional fully kinetic simulation tool.Using a simplified simulation of the Hall effect thruster, we observed the importance of the azimuthal electron drift instability for anomalous cross-field electron transport. Then, using a realistic model of a Hall effect thruster, we were able to study the effects of plasma/wall interactions on the plasma discharge characteristics, as well as to quantify the coupled effects of secondary electron emission and electron drift instability on the anomalous transport. Through parametric study of secondary electron emission, three plasma discharge regimes were identified. Finally the impact of alternative propellants was studied.

Page generated in 0.0472 seconds