• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 315
  • 74
  • 45
  • 44
  • 15
  • 11
  • 7
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 803
  • 249
  • 190
  • 141
  • 131
  • 124
  • 89
  • 82
  • 71
  • 70
  • 65
  • 61
  • 60
  • 60
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Evaluation and comparison of electric propulsion motors for submarines /

Harbour, Joel P. January 2001 (has links)
Thesis (Naval Engineer and M.S. in Electrical Engineering and Computer Science)--Massachusetts Institute of Technology, 2001. / Includes bibliographical references (p. 100-106). Also available online.
142

Langmuir probe measurements in the plume of a pulsed plasma thruster

Byrne, Lawrence Thomas. January 2002 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: PPT; pulsed plasma thruster; Langmuir probe; plasma diagnostics; electric propulsion; electron temperature; electron density. Includes bibliographical references (p. 97-102).
143

Development of waterjet testing techniques /

Thornhill, Eric, January 1999 (has links)
Thesis (M.Eng.)--Memorial University of Newfoundland, 1999. / Bibliography: leaves 207-210.
144

Multiagent autonomous energy management

Ganesh, Shilpa B. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2005. / Title from document title page. Document formatted into pages; contains x, 108 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 102-108).
145

Numerical investigation on effects of hub taper angle and pod-strut geometry on propulsive performance of pusher propeller configurations /

Islam, Mohammed Fakhrul, January 2004 (has links)
Thesis (M.Eng.)--Memorial University of Newfoundland, 2004. / Bibliography: leaves 111-122.
146

Integrating the FEL on an all-electric ship

Allen, Charles A. January 2007 (has links) (PDF)
Thesis (M.S. in Applied Physics)--Naval Postgraduate School, June 2007. / Thesis Advisor(s): William B. Colson. "June 2007." Includes bibliographical references (p. 53-54). Also available in print.
147

Optimization of a magnetoplasmadynamic arc thruster

Krolak, Matthew Joseph. January 2007 (has links)
Thesis (M.S.) -- Worcester Polytechnic Institute. / Keywords: Electric Propulsion; Plasma thruster; MPD. Includes bibliographical references (leaves 6-13).
148

A sizing and vehicle matching methodology for boundary layer ingesting propulsion systems

Gladin, Jonathan Conrad 07 January 2016 (has links)
Boundary layer ingesting (BLI) propulsion systems offer potential fuel burn reduction for civil aviation and synergize with new advanced airframe concepts. However, the distorted inlet flow for BLI systems can cause performance and stability margin loss. System level analyses generally size a single engine at a fixed design point which ignores the distributed nature of many BLI architectures. Furthermore, operability and performance during o design are generally not considered during the sizing process. In this thesis, a methodology is developed for multi-design point sizing of BLI propulsion systems for specific vehicle geometry including an operability constraint. The methodology is applied to a 300 passenger hybrid-wing body vehicle with embedded turbofan engines. The methodology required investigations into three main areas of research. The first was the modeling of BLI impacts over a range of flight conditions. A BLI analysis tool was developed which models the vehicle boundary layer, pre-entry region, inlet, and fan losses throughout the entire flight envelope. An experiment investigating the impact of the modeling approach is conducted, and results show that proper mapping of the fan, inlet, and BLI propulsive benefit is crucially important for making proper design decisions. The impact of BLI on the system was found to vary significantly during o ff design and especially with changes in vehicle angle of attack. The operability constraint is investigated using a parallel compressor model and was found to place a minimum limit on the propulsor height. The second area of investigation was the creation of a multi-propulsor sizing methodology which accounts for diff erences between propulsors during flight that is induced by their interaction with the vehicle. A modified multi-design point approach was used which employs a set of design and power management rules to relate the operation of the propulsors. A performance comparison of this methodology with the standard single propulsor approach showed a signicant difference. The final area of investigation was the determination of critical o ff-design conditions for the sizing procedure. A screening process is developed which tests all off -design conditions for a subset of the design space to find conditions which are stall margin or thrust deficient. The experiment showed that it is necessary to consider the high angle of attack take-off condition during sizing for the HWB vehicle and that a variable area nozzle is required to meet the operability constraint. A follow on experiment showed that the inclusion of this point reduced the achievable fuel burn benefit for more aggressive BLI designs.Boundary layer ingesting (BLI) propulsion systems offer potential fuel burn reduction for civil aviation and synergize with new advanced airframe concepts. However, the distorted inlet flow for BLI systems can cause performance and stability margin loss. System level analyses generally size a single engine at a fixed design point which ignores the distributed nature of many BLI architectures. Furthermore, operability and performance during o design are generally not considered during the sizing process. In this thesis, a methodology is developed for multi-design point sizing of BLI propulsion systems for specific vehicle geometry including an operability constraint. The methodology is applied to a 300 passenger hybrid-wing body vehicle with embedded turbofan engines. The methodology required investigations into three main areas of research. The first was the modeling of BLI impacts over a range of flight conditions. A BLI analysis tool was developed which models the vehicle boundary layer, pre-entry region, inlet, and fan losses throughout the entire flight envelope. An experiment investigating the impact of the modeling approach is conducted, and results show that proper mapping of the fan, inlet, and BLI propulsive benefit is crucially important for making proper design decisions. The impact of BLI on the system was found to vary significantly during o ff design and especially with changes in vehicle angle of attack. The operability constraint is investigated using a parallel compressor model and was found to place a minimum limit on the propulsor height. The second area of investigation was the creation of a multi-propulsor sizing methodology which accounts for diff erences between propulsors during flight that is induced by their interaction with the vehicle. A modified multi-design point approach was used which employs a set of design and power management rules to relate the operation of the propulsors. A performance comparison of this methodology with the standard single propulsor approach showed a signicant difference. The final area of investigation was the determination of critical o ff-design conditions for the sizing procedure. A screening process is developed which tests all off -design conditions for a subset of the design space to find conditions which are stall margin or thrust deficient. The experiment showed that it is necessary to consider the high angle of attack take-off condition during sizing for the HWB vehicle and that a variable area nozzle is required to meet the operability constraint. A follow on experiment showed that the inclusion of this point reduced the achievable fuel burn benefit for more aggressive BLI designs.
149

Análise eletromiográfica da fase inicial da autopropulsão de cadeira de rodas manual / Electromyographic analysis of the initial stage of wheelchair propulsion

Caio Sadao Medeiros Komino 18 October 2017 (has links)
Propulsionar cadeira de rodas (CR) está relacionado a altas incidências de dores e lesões em usuários de cadeira de rodas (UCR). Embora seja reconhecida como uma forma de baixa eficiência para se locomover, representa fundamental importância para o desempenho dessas pessoas nas atividades de vida diária, ocupacionais, de lazer e em sua participação social. Ao longo dos estudos sobre a propulsão nas últimas décadas, foi notado recentemente em especial, que a propulsão inicial que retira o sistema usuário-cadeira de rodas do repouso, o colocando em movimento, apresentam a maiores solicitações mecânicas. Considerando que esta situação é executada várias vezes durante o uso típico da cadeira de rodas, torna-a relevante objeto de estudo. Como até o momento, pouco foram os estudos sobre a fase inicial da autopropulsão e que do ponto de vista da neuroativação, esse movimento não foi abordado, este estudo tem como objetivo descrever o gesto da fase inicial da autopropulsão de cadeira de rodas manual de UCR, por meio da eletromiografia, apresentando os níveis atingidos de ativação muscular e o perfil do comportamento de ativação ao longo da execução do gesto da autopropulsão. Para isso foram avaliados oito grupos musculares envolvidos nesse gesto de onze UCR. Os sinais eletromiográficos foram coletados dos oito grupos musculares, simultaneamente, durante a execução de dez propulsões, partindo do repouso, de cada UCR participante da pesquisa. Com relação aos níveis de ativações musculares, foi introduzido um método alternativo de normalização. Esse método consiste na realização do teste de contração isométrica máxima na própria CR. Os resultados foram apresentados em boxplot a fim de demonstrar o pico de ativação bem como a distribuição dos demais níveis de ativação. Como o novo método proposto demonstrou limitações, inviabilizou a interpretação dos resultados quanto as intensidades calculadas. Sobre o perfil de acionamento muscular ao longo da execução da autopropulsão, os resultados foram expostos em gráficos normalizados pelo pico dinâmico e em relação ao período de um ciclo de propulsão, evidenciando o comportamento ativado em cada instante do ciclo. Segundo os resultados dessa segunda metodologia, entre os oito grupos musculares examinados, os que apresentaram os maiores picos de ativação foram: deltoide anterior (80,27%), o peitoral maior (79,27%), os flexores de punho (78,93%) e os extensores de punho (80,65%). Os achados colaboram com estudos anteriores de outros autores de que os principais grupos musculares efetores na propulsão de CR são o deltóide anterior (DA) e peitoral maior (PM). / Propelling wheelchair (CR) is related to high incidences of pain and injury in wheelchair users (WCU). Although this locomotion way be known as low efficient locomotion mode, it represents fundamental importance for these people performance in daily living activities, occupational, leisure and in their social participation. Over the studies course on propulsion in recent decades, it has recently been noted, particularly, that the initial stage of wheelchair propulsion which retires the user-wheelchair system from resting, putting it into motion, presents greater mechanical stresses. It considering this situation is executed several times during the typical wheelchair usage, it makes this relevant study object. As until current moment, there are few studies about initial stage of wheelchair propulsion and, from the neuroactivation point of view, this movement was not approached, this study aims to describe the gesture of initial stage of manual wheelchair propulsion from WCU, across electromyography, presenting the muscular activation levels achieved and the recruited behavior profile during the propulsion gesture execution. For this problem, eight muscle groups involved in this gesture were evaluated from eleven WCU. Electromyographic signals were collected from these eight muscle groups, simultaneously, during ten propulsions execution, starting from resting, of each WCU participant of the research. Regarding the muscular activation levels, an alternative normalization method was introduced. This method consists in performing the maximum isometric contraction test on the wheelchair itself. The results were showed in boxplot in order to demonstrate the activation peak as well as the remaining activation levels distribution. As the new method proposed showed limitations, a better results interpretation was not possible on calculated intensities. Regarding the muscular activation profile during the propulsion execution, the results were exposed in graphs normalized by the dynamic peak as well as in relation to a single propulsion cycle, evidencing the activated behavior at each cycle moment. According to the results based on second methodology, among the eight muscle groups examined, the ones which presented the highest activation peaks values were: the anterior deltoid (80.27%), the pectoralis major (79.27%), the wrist flexors (78, 93%) and the wrist extensors (80.65%). The findings agree with previous studies by other authors that the main effector muscle groups in CR propulsion are anterior deltoid (DA) and pectoralis major (PM).
150

Experimental investigations of on-axis discrete frequency fan noise.

Leggat, Lennox John January 1973 (has links)
The thesis describes experimental techniques used and results obtained in the investigation of the pure tone components of sound radiation from a commercial 19 inch axial flow fan. The causes and extent of the discrete tone sources were investigated by several methods: cross-correlation of fan surface pressure fluctuations with far field sound, spectral analysis of surface pressure, and examination of surface pressure waveforms. A unique feature involved the design of an apparatus for detecting and transmitting fan-borne pressure fluctuations off the rotating blades. "Causality Correlations" with the on-axis far field sound rendered dipole source strength distribution functions over a span wise line at 15 per cent chord from the leading edge of the fan blade and around a circumferential ring on the motor support strut at a fan radius of 89 per cent. Results indicate that the on-axis discrete tones are a result of source mechanisms causing force fluctuations on the blades and struts which in turn lead to sound radiation which is dipole in nature and is most intense on the axis of the fan. These mechanisms include ingestion of a concentrated vortex, modulation of the clearance between the blade tips and the fan shroud, flow separation around the inlet bell mouth, and fluctuations in the inflow velocity due to the proximity of the fan to the wedged wall of the Anechoic chamber. Crude integral approximations of source strength distributions over the surfaces of the blades and the struts indicated that sound radiation at the blade passage frequency from these two contributors to the overall sound would be about equal, although more sound radiation is expected to originate at the rotor. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate

Page generated in 0.0504 seconds