41 |
Prosthetic socket in Titanium : An outer shell prosthetic socket for a lower-leg amputee manufactured in Ti6Al4V by Electron Beam MeltingSkoglund, Per January 2015 (has links)
The common manufacturing process of prosthetic sockets is usually a time- and labor consuming activity. This project’s purpose was to look for alternative manufacturing methods that could speed up the process and enhance the experience for the patient for example make some personal design or make the socket lighter. The main goal was to investigate which properties could be achieved by applying Electron Beam Melting as an alternative manufacturing process for prosthetic sockets by applying an earlier developed methodology. An investigation of earlier scientific works with the keywords (additive manufacturing, free form fabrication, orthopedic, prosthetic sockets and rapid manufacturing) was done as well as gathering knowledge how to operate and handle the machines necessary to carry out the project. An updated version of the methodology was developed where the design was verified using finite element analysis. With the updated version the methodology contained nine steps, which in short was as follows. First apprehend an inner socket from an orthopedic clinic with a pattern drawn up on it, the pattern is then transferred to a computer environment and manipulated to the desired shape and thickness. A compressive strength test, both virtual and experimental, was designed by a modified version of the ISO-10328 standard and the virtual design was verified before the socket was manufactured in the Electron Beam Melting machine. The manufactured socket was tested in the experimental set-up to verify the virtual one. The result was a personal designed socket of Ti6Al4V including the male pyramid for connection and a suspension system, which consisted of an inner socket and a one-way valve. It was concluded that Electron Beam Melting could be used as an alternative manufacturing process of prosthetic sockets.
|
42 |
NANOCOMPOSITE BIOELECTRONICS FOR BIOPOTENTIAL ENABLED PROSTHESISLee, Dong Sup 01 January 2017 (has links)
Soft material-enabled electronics can demonstrate extreme mechanical flexibility and stretchability. Such compliant, comfortable electronics allow continuous, long-term measurement of biopotentials on the skin. Manufacturing of the stretchable electronic devices is enabled by the recent development combining materials transfer printing and microfabrication. However, the existing method using inorganic materials and multi-layered polymers requires long material preparation time and expensive processing cost due to the requirement of microfabrication tools and complicated transfer printing steps. Here, this study develops a new fabrication method of soft electronics via a micro-replica-molding technique, which allows fast production, multiple use, and low cost by avoiding microfabrication and multiple transfer printing. The core materials, carbon nanomaterials integrated with soft elastomers, further reduces the entire production cost, compared to costly metals such as gold and silver, while offering mechanical compliance. Collectively, skin-wearable electrodes, designed by optimized materials and fabrication method enable a high-fidelity measurement of non-invasive electromyograms on the skin for advanced human-machine interface, targeting prosthesis.
|
43 |
Evaluation of a novel myoelectric training deviceClingman, Ryan 26 July 2012 (has links)
While research shows that a patient’s success in using a myoelectric prosthetic arm is dependent on receiving effective training, current methods of training are not designed to effectively hold attention long enough for optimal training. This study focused on evaluating a novel myoelectric training device, consisting of a toy car controlled by EMG signals from the arm. Subjects’ performance with the trainer was evaluated to determine its ability to provide experience with EMG controls. Eight healthy adult subjects were taken through typical initial stages of myoelectric training, then asked to drive the car through a slalom course while the time, number of errors, and reversals required to complete the course were recorded, as well as the degree of difficulty subjects reported. The learning induced by using the trainer was found to be statistically significant (p < 0.002), with subjects demonstrating dramatic improvements (> 49%) in performance.
|
44 |
Photopolymerized materials and patterning for improved performance of neural prostheticsTuft, Bradley William 01 July 2014 (has links)
Neural prosthetics are used to replace or substantially augment remaining motor and sensory functions of neural pathways that were lost or damaged due to physical trauma, disease, or genetics. However, due to poor spatial signal resolution, neural prostheses fail to recapitulate the intimate, precise interactions inherent to neural networks. Designing materials and interfaces that direct de novo nerve growth to spatially specific stimulating elements is, therefore, a promising method to enhance signal specificity and performance of prostheses such as the successful cochlear implant (CI) and the developing retinal implant.
In this work, the spatial and temporal reaction control inherent to photopolymerization was used to develop methods to generate micro and nanopatterned materials that direct neurite growth from prosthesis relevant neurons. In particular, neurite growth and directionality has been investigated in response to physical, mechanical, and chemical cues on photopolymerized surfaces. Spiral ganglion neurons (SGNs) serve as the primary neuronal model as they are the principal target for CI stimulation. The objective of the research is to rationally design materials that spatially direct neurite growth and to translate fundamental understanding of nerve cell-material interactions into methods of nerve regeneration that improve neural prosthetic performance.
A rapid, single-step photopolymerization method was developed to fabricate micro and nanopatterned physical cues on methacrylate surfaces by selectively blocking light with photomasks. Feature height is readily tuned by modulating parameters of the photopolymerizaiton including initiator concentration and species, light intensity, separation distance from the photomask, and radiation exposure time. Alignment of neural elements increases significantly with increasing feature amplitude and constant periodicity, as well as with decreasing periodicity and constant amplitude. SGN neurite alignment strongly correlates with the maximum feature slope. Neurite alignment is compared on unpatterned, unidirectional, and multidirectional photopolymerized micropatterns.
The effect of substrate rigidity on neurite alignment to physical cues was determined by maintaining equivalent pattern microfeatures, afforded by the reaction control of photopolymerization, while concomitantly altering the composition of several copolymer platforms to tune matrix stiffness. For each platform, neurite alignment to unidirectional patterns increases with increasing substrate rigidity. Interestingly, SGN neurites respond to material stiffness cues that are orders of magnitude higher (GPa) than what is typically ascribed to neural environments (kPa).
Finally, neurite behavior at bioactive borders of various adhesion modulating molecules was evaluated on micropatterned materials to determine which cues took precedence in establishing neurite directionality. At low microfeatures aspect ratios, neurites align to the pattern direction but are then caused to turn and repel from or turn and align to bioactive borders. Conversely, physical cues dominate neurite path-finding as pattern feature slope increases, i.e. aspect ratio of sloping photopolymerized features increases, causing neurites to readily cross bioactive borders. The photopolymerization method developed in this work to generate micro and nanopatterned materials serves as an additional surface engineering tool that enables investigation of cell-material interactions including directed de novo neurite growth. The results of this interdisciplinary effort contribute substantially to polymer neural regeneration technology and will lead to development of advanced biomaterials that improve neural prosthetic tissue integration and performance by spatially directing nerve growth.
|
45 |
Evaluation and Design of a Globally Applicable Rear-locking Prosthetic Knee MechanismWyss, Dominik 27 November 2012 (has links)
A rear locking prosthetic knee joint with a durable, rear Automatic Stance-Phase Lock (ASPL), was developed to investigate the versatility of the (ASPL) mechanism in improving the functionality of prosthetic knees appropriate for a global market. An international survey and a Quality Function Deployment identified deficits with existing prosthetic knee mechanisms and established the most influential design parameters. Work on the knee design was completed following a comparative stability analysis of different knee mechanisms which justified the initial design. Solid models were generated with computer design software and a prototype was produced and structurally tested. Finally, clinical pilot testing was conducted on a unilateral transfemoral amputee, and various gait variables were assessed. As hypothesized, the knee performed close to the level of a conventional six-bar knee providing highly effective stance-phase control and the pilot test showed that improvements to the swing-phase response could further reduce the asymmetry of gait.
|
46 |
Evaluation and Design of a Globally Applicable Rear-locking Prosthetic Knee MechanismWyss, Dominik 27 November 2012 (has links)
A rear locking prosthetic knee joint with a durable, rear Automatic Stance-Phase Lock (ASPL), was developed to investigate the versatility of the (ASPL) mechanism in improving the functionality of prosthetic knees appropriate for a global market. An international survey and a Quality Function Deployment identified deficits with existing prosthetic knee mechanisms and established the most influential design parameters. Work on the knee design was completed following a comparative stability analysis of different knee mechanisms which justified the initial design. Solid models were generated with computer design software and a prototype was produced and structurally tested. Finally, clinical pilot testing was conducted on a unilateral transfemoral amputee, and various gait variables were assessed. As hypothesized, the knee performed close to the level of a conventional six-bar knee providing highly effective stance-phase control and the pilot test showed that improvements to the swing-phase response could further reduce the asymmetry of gait.
|
47 |
Effect of Material Properties and Hemodynamics on the Healing of Vascular Grafts in baboonsCostello, James Robert 12 April 2004 (has links)
Each year, more than one million prosthetic vascular grafts are implanted. Well-over 50 % of these artificial vessels are of the small caliber variety with an inner diameter less than or equal to 10 mm. The challenge rests in implanting these synthetic substitutes into a hemodynamic environment with a high downstream resistance and low rates of flow.
Over the course of four interrelated studies, we investigated the healing properties of small caliber prosthetic vascular grafts. All of these studies were conducted using baboons. First, we documented the difference in healing response between three different types of vascular grafts: (1) autologous artery (2) allogeneic vessel (3) prosthetic ePTFE. This comparison furnished an important model of graft healing. Proliferating endothelial cells were localized to the top 10 % of the neointima, while the proliferating smooth muscle cells were identified within the lower 10 % of the neointima.
Secondly, we examined the effects of changing a prosthetic grafts material properties and how that change impacts healing of the grafts surface. These ultrastructural changes were introduced by radially stretching a porous 60 mm ePTFE vascular graft. Radially stretching the graft material decreased the void fraction, reduced the potential for transmural ingrowth, and changed the healing characteristics of the implanted vessels.
Thirdly, we investigated the effect of a changing hemodynamic environment upon the healing of a vascular graft with uniform material properties. The changing hemodynamics were generated with a stenotic model. Under sub-acute conditions, an inverse relationship failed to exist between intimal thickening and wall shear stress.
Lastly, the details of this hemodynamic environment were documented with computational fluid dynamics (CFD). The computational grids were constructed using three sets of geometric information: (1) incorporating the ideal material dimensions of the implanted vessel (2) utilizing contour information from pressure-perfused histologic cross-sections (3) applying geometric information form detailed MRI imaging. MRI imaging information provided the best description of the vessels hemodynamic environment. With this computational information, correlations were made between the intimal thickening and hemodynamic parameters.
|
48 |
The influence of prosthetic foot design and walking speed on below-knee amputee gait mechanicsFey, Nicholas Phillip 03 February 2012 (has links)
Unilateral below-knee amputees commonly experience asymmetrical gait patterns and develop comorbidities in their intact (non-amputated) and residual (amputated) legs, with the mechanisms leading to these asymmetries and comorbidities being poorly understood. Prosthetic feet have been designed in an attempt to minimize walking asymmetries by utilizing elastic energy storage and return (ESAR) to help provide body support, forward propulsion and leg swing initiation. However, identifying the influence of walking speed and prosthetic foot stiffness on amputee gait mechanics is needed to develop evidence-based rationale for prosthetic foot selection and treatment of comorbidities. In this research, experimental and modeling studies were performed to identify the influence of walking speed and prosthetic foot stiffness on amputee walking mechanics.
The results showed that when asymptomatic and relatively new amputees walk using clinically prescribed prosthetic feet across a wide range of speeds, loading asymmetries exist between the intact and residual knees. However, knee intersegmental joint force and moment quantities in both legs were not higher compared to non-amputees, suggesting that increased knee loads leading to joint disorders may develop in response to prolonged prosthesis usage or the onset of joint pathology over time. In addition, the results showed that decreasing ESAR foot stiffness can increase prosthesis range of motion, mid-stance energy storage, and late-stance energy return. However, the prosthetic foot contributions to forward propulsion and swing initiation were limited due to muscle compensations needed to provide body support and forward propulsion in the absence of residual leg ankle muscles.
A study was also performed that integrated design optimization with forward dynamics simulations of amputee walking to identify the optimal prosthetic foot stiffness that minimized metabolic cost and intact knee joint forces. The optimal stiffness profile stiffened the toe and mid-foot while making the ankle less stiff, which decreased the intact knee joint force during mid-stance while reducing the overall metabolic cost of walking.
These studies have provided new insight into the relationships between prosthetic foot stiffness and amputee walking mechanics, which provides biomechanics-based rationale for prosthetic foot prescription that can lead to improved amputee mobility and overall quality of life. / text
|
49 |
The perception and comprehension of prosthetic vison: patient rehabilitation and image processing considerations from simulated prosthetic vision psychophysicsChen, Spencer Chin-Yu, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW January 2009 (has links)
A successful restoration of vision should allow the blind to look, to see and to understand. The engineering of a microelectronic vision prosthesis has come a long way over the last forty years, but the understanding of how the restored form of vision would be interpreted and functionally applied to everyday living has made little progress until recent times. Prosthetic vision is not what most people think it would be; it is a visual scene composed of relatively large, isolated, spots of light so-called "phosphenes", very much like a magnified pictorial print. This thesis dissertation seeks to obtain a complete survey of the visual description of phosphenes from the human trial reports in the literature, simulate it, obtain a measure of the functional capacity of such visual perception, and explain the measured performance against design aspects of phosphene presentation, human perception, cognition and behaviour. Specifically, "visual acuity" (VA) was assessed on normally sighted subjects (N=15) administered with "simulated prosthetic vision". VA is a functional measure of vision highly correlated to many daily activities. Aggregating the results from the study with the other VA studies in prosthetic vision, it is shown that in general, the density of the phosphene field determines the affordable VA; however, design aspects relating to the phosphene field lattice (0.03 10gMAR with the hexagonal lattice as opposed to a square lattice) and image processing routines (0.15 10gMAR at optimised settings) can be further fine-tuned to improve VA performance. Significant performance improvement also arose from learning (0.13 10gMAR over ten visitations) and visual scanning adaptation (0.20 10gMAR with a circular scanning strategy). Performance improvements are likely related to various preferences and perceptual preferences of the human visual system. A rehabilitation program targeting the appropriate behavioural adaptation coupled with image processing routine optimised for image comprehension should provide a vision prosthesis recipient with the best functional experience to restored vision.
|
50 |
Myoelectric Prosthetic HandLindström, Konni, Zurapovic, Vedran January 2018 (has links)
This thesis is a development project for a myoelectric prosthetic hand. That means a mechanical hand that is controlled and actuated by the user's own muscles on the residual limb. The thesis has led to a theoretical concept of a complete prosthesis and a non-complete physical prototype that provides proof of concept and functions. The thesis was as a means of providing the mechanical development of an alternative model of the prosthesis that is more functional and has the ability to offer the users a lower price than current models. The foundation of the project is that the development has been done on a user needs basis. This leads to customer requirements that are derived from the users themselves. The development begun with a wide research to obtain user feedback as well as technical data of different mechanical solutions. The focal point of the thesis is the mechanical aspect of the prosthetic while the electronic and sensory systems were implemented with the use of standardized components.
|
Page generated in 0.0794 seconds