• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

BIOSENSING SYSTEMS FOR THE DETECTION OF BACTERIAL QUORUM SENSING MOLECULES: A TOOL FOR INVESTIGATING BACTERIA-RELATED DISORDERS AND FOOD SPOILAGE PREVENTION

Raut, Nilesh G 01 January 2012 (has links)
Quorum sensing enables bacteria to communicate with bacteria of the same or different species, and to modulate their behavior in a cell-density dependent manner. Communication occurs by means of small quorum sensing signaling molecules (QSMs) whose concentration is proportional to the population size. When a QSM threshold concentration is reached, certain genes are expressed, thus allowing control of several processes, such as, virulence factor production, antibiotic production, and biofilm formation. Not only many pathogenic bacteria are known to produce QSMs, but also QSMs have been identified in some bacteria-related disorders. Therefore, quantitative detection of QSMs present in clinical samples may be a useful tool in the investigation and monitoring of bacteria-related diseases, thus prompting the use of QSMs as biomarkers of disease. Herein, we have developed and utilized whole-cell biosensing systems and protein based biosensing systems to detect QSMs in clinical samples, such as, saliva, stool, and bowel secretions. Additionally, since bacteria are responsible for food spoilage, we employed the developed biosensing systems to detect QSMs in food samples and demonstrated their applicability for early identification of food contamination. Furthermore, we have utilized these biosensing systems to screen antibacterial compounds employed for food preservation, namely, generally regarded as safe (GRAS) compounds, for their effect on quorum sensing.
2

ENGINEERING PROTEINS WITH UNIQUE CHARACTERISTICS FOR DIAGNOSTICS AND BIOSENSORS

Joel, Smita 01 January 2011 (has links)
Proteins possess a broad range of structural and functional properties and, therefore, can be employed in a variety of biomedical applications. While a good number of protein-based biosensing systems and biosensors for target analytes have been developed, the search for versatile, highly sensitive and selective sensors with long term stability able to provide fast detection of target analytes continues to be a challenge. To that end, we now report the design and development of modified proteins with tailored characteristics and their further utilization in the development of biosensing systems. We take advantage of binding proteins that undergo a change in conformation upon binding to their respective target ligand analytes for the development of highly selective biosensing systems. The first class of binding proteins that was explored for this purpose was antibodies. A non-canonical site in the variable region of a monoclonal antibody was tagged with a fluorescent probe to sense the binding of analyte to its corresponding antigen-binding site. The strategy employed for designing antibodysensing molecules is universal as it can be employed for sensing any biomolecule of interest provided that there is an available antibody against the target ligand analyte. In a second strategy, we utilized designer glucose recognition proteins (GRPs) that were prepared by incorporation of unnatural amino acids in the glucose/galactose binding protein (GBP) of Escherichia coli and its truncated fragments. By taking advantage of the global incorporation method, we were able to fine-tune the binding affinity and thermal stability of the proteins, thus, allowing for the development of a reagentless fluorescence based fiber optic glucose biosensor capable of monitoring glucose in the hypoglycemic, normal, and hyperglycemic range, as well as in the hypothermic and hyperthermic temperature range.

Page generated in 0.1367 seconds