1 |
Investigating Phenolic-Mediated Protein Matrix Development for Potential Control of Cereal Starch DigestionLeigh C R. Schmidt (6869153) 15 August 2019 (has links)
<div>Shifts
in the human diet to more refined foods and ingredients have contributed to the
rise in metabolic disease rates associated with long-term consumption of foods
causing swift rises in blood glucose response. Foods which result in a more
moderate blood glucose curve are considered healthier by increasing satiety and
reducing oxidative stress. Sorghum products contain naturally slowly digested
starch. The matrix of sorghum porridges contains kafirin protein bodies which
cross link around gelatinizing starch molecules, while similar nascent matrices
in other cereals aggregate and collapse. The 3-deoxyanthocyanidin pigments
unique to sorghum may be accountable for the difference in matrix stability.
The density of the starch entrapped in the matrices is thought to partially
inhibit α-amylase access to the starch, reducing overall starch digestion and
thereby mitigating glucose response. The purpose of this work was to increase our
understanding of how phenolic compounds in sorghum interact with endosperm
proteins to create a stable matrix, and to explore if the knowledge might be
translated to other starchy cereal products. In the first study, phenolic
extracts from flours (sorghum, corn masa, white rice) were characterized for
phenolic content, antioxidant activity, phenolic components, and their ability
to interact with a model protein system (ovalbumin) in order to examine protein
polymerization. In the second study, specific
phenolic compounds in sorghums (<i>p</i>-coumaric,
sinapic, and gallic acids; (+)-catechin; and apigeninidin, a
3-deoxyanthocyanidin found in sorghums) were interacted in the model protein
system at different concentrations to observe extent and type of protein
polymerization, and promising compounds subjected to fluorescence quenching
spectroscopy to examine the nature of the interactions. The final study explored the effects of apigeninidin addition to a
yellow corn flour and naturally present anthocyanin (blue corn) on starch
digestion and microstructure of porridges by utilizing an <i>in vitro</i> α-amylase assay and confocal microscopy. </div><div>The slow digestion of starch in cooked sorghum products
can be attributed to the 3-deoxyanthocyanidin compounds present in the grain
participating in sulfhydryl-disulfide interchanges which results in extensive
kafirin cross-linking surrounding starch granules. While other phenolic and
redox-active components may affect matrix formation and stability,
3-deoxyanthocyanidins appear to have the most direct influence, and their
ability to modify food protein matrices appears to have a direct result on
starch digestion <i>in vitro</i>.</div>
|
2 |
Insights into the mechanism of Tau polymerization and the effects of small moleculesCongdon, Erin Elizabeth 06 August 2007 (has links)
No description available.
|
3 |
SMALL ANGLE SCATTERING OF LARGE PROTEIN UNITS UNDER OSMOTIC STRESSLuis Palacio (8775689) 30 April 2020 (has links)
<div>Large protein molecules are abundant in biological cells but are very difficult to study in physiological conditions due to molecular disorder. For large proteins, most structural information is obtained in crystalline states which can be achieved in certain conditions at very low temperature. X-ray and neutron crystallography methods can then be used for determination of crystalline structures at atomic level. However, in solution at room or physiological temperatures such highly resolved descriptions cannot be obtained except in very few cases. Scattering methods that can be used to study this type of structures at room temperature include small-angle x-ray and neutron scattering. These methods are used here to study two distinct proteins that are both classified as glycoproteins, which are a large class of proteins with diverse biological functions. In this study, two specific plasma glycoproteins were used: Fibrinogen (340 kDa) and Alpha 1-Antitrypsin or A1AT (52 kDa). These proteins have been chosen based on the fact that they have a propensity to form very large molecular aggregates due to their tendency to polymerize. One goal of this project is to show that for such complex structures, a combination of scattering methods that include SAXS, SANS, and DLS can address important structural and interaction questions despite the fact that atomic resolution cannot be obtained as in crystallography. A1AT protein has been shown to have protective roles of lung cells against emphysema, while fibrinogen is a major factor in the blood clotting process. A systematic approach to study these proteins interactions with lipid membranes and other proteins, using contrast-matching small-angle neutron scattering (SANS), small angle x-ray scattering (SAXS) and dynamic light scattering (DLS), is presented here. A series of structural reference points for each protein in solution were determined by performing measurements under osmotic stress controlled by the addition of polyethylene glycol-1,500 MW (PEG 1500) in the samples. Osmotic pressure changes the free energy of the molecular mixture and has consequences on the structure and the interaction of molecular aggregates. In particular, the measured radius of gyration (Rg) for A1AT shows a sharp structural transition when the concentration of PEG 1500 is between 33 wt\% and 36 wt\%. Similarly, a significant structural change was observed for fibrinogen when the concentration of PEG 1500 was above 40 wt\%. This analysis is applied to a study of A1AT interacting with lipid membranes and to a study of fibrinogen polymerization in the presence of the enzyme thrombin, which catalyzes the formation of blood clots. The experimental approach presented here and the applications to specific questions show that an appropriate combination of scattering methods can produce useful information on the behavior and the interactions of large protein systems in physiological conditions despite the lower resolution compared to crystallography.</div>
|
Page generated in 0.1045 seconds