• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algoritmos evolutivos para predição de estruturas de proteínas / Evolutionary algorithms, to proteins structures prediction

Lima, Telma Woerle de 01 September 2006 (has links)
A Determinação da Estrutura tridimensional de Proteínas (DEP) a partir da sua seqüência de aminoácidos é importante para a engenharia de proteínas e o desenvolvimento de novos fármacos. Uma alternativa para este problema tem sido a aplicação de técnicas de computação evolutiva. As abordagens utilizando Algoritmos Evolutivos (AEs) tem obtido resultados relevantes, porém estão restritas a pequenas proteínas, com dezenas de aminoácidos e a algumas classes de proteínas. Este trabalho propõe a investigação de uma abordagem utilizando AEs para a predição da estrutura terciária de proteínas independentemente do seu tamanho e classe. Os resultados obtidos demonstram que apesar das dificuldades encontradas a abordagem investigada constitue-se em uma alternativa em relação aos métodos clássicos de determinação da estrutura terciária das proteínas. / Protein structure determination (DEP) from aminoacid sequences is very importante to protein engineering and development of new drugs. Evolutionary computation has been aplied to this problem with relevant results. Nevertheless, Evolutionary Algorithms (EAs) can work with only proteins with few aminoacids and some protein classes. This work proposes an approach using AEs to predict protein tertiary structure independly from their size and class. The obtained results show that, despite of the difficulties that have been found, the investigate approach is a relevant alternative to classical methods to protein structure determination.
2

Algoritmos evolutivos para predição de estruturas de proteínas / Evolutionary algorithms, to proteins structures prediction

Telma Woerle de Lima 01 September 2006 (has links)
A Determinação da Estrutura tridimensional de Proteínas (DEP) a partir da sua seqüência de aminoácidos é importante para a engenharia de proteínas e o desenvolvimento de novos fármacos. Uma alternativa para este problema tem sido a aplicação de técnicas de computação evolutiva. As abordagens utilizando Algoritmos Evolutivos (AEs) tem obtido resultados relevantes, porém estão restritas a pequenas proteínas, com dezenas de aminoácidos e a algumas classes de proteínas. Este trabalho propõe a investigação de uma abordagem utilizando AEs para a predição da estrutura terciária de proteínas independentemente do seu tamanho e classe. Os resultados obtidos demonstram que apesar das dificuldades encontradas a abordagem investigada constitue-se em uma alternativa em relação aos métodos clássicos de determinação da estrutura terciária das proteínas. / Protein structure determination (DEP) from aminoacid sequences is very importante to protein engineering and development of new drugs. Evolutionary computation has been aplied to this problem with relevant results. Nevertheless, Evolutionary Algorithms (EAs) can work with only proteins with few aminoacids and some protein classes. This work proposes an approach using AEs to predict protein tertiary structure independly from their size and class. The obtained results show that, despite of the difficulties that have been found, the investigate approach is a relevant alternative to classical methods to protein structure determination.
3

Investigating the Structural Basis for Human Disease: APOBEC3A and Profilin

Silvas, Tania V. 31 January 2018 (has links)
Analyzing protein tertiary structure is an effective method to understanding protein function. In my thesis study, I aimed to understand how surface features of protein can affect the stability and specificity of enzymes. I focus on 2 proteins that are involved in human disease, Profilin (PFN1) and APOBEC3A (A3A). When these proteins are functioning correctly, PFN1 modulates actin dynamics and A3A inhibits retroviral replication. However, mutations in PFN1 are associated with amyotrophic lateral sclerosis (ALS) while the over expression of A3A are associated with the development of cancer. Currently, the pathological mechanism of PFN1 in this fatal disease is unknown and although it is known that the sequence context for mutating DNA vary among A3s, the mechanism for substrate sequence specificity is not well understood. To understand how the mutations in Profilin could lead to ALS, I solved the structure of WT and 2 ALS-related mutants of PFN1. Our collaborators demonstrated that ALS-linked mutations severely destabilize the native conformation of PFN1 in vitro and cause accelerated turnover of the PFN1 protein in cells. This mutation-induced destabilization can account for the high propensity of ALS-linked variants to aggregate and also provides rationale for their reported loss-of-function phenotypes in cell-based assays. The source of this destabilization was illuminated by my X-ray crystal structures of several PFN1 proteins. I found an expanded cavity near the protein core of the destabilized M114T variant. In contrast, the E117G mutation only modestly perturbs the structure and stability of PFN1, an observation that reconciles the occurrence of this mutation in the control population. These findings suggest that a destabilized form of PFN1 underlies PFN1-mediated ALS pathogenesis. To characterize A3A’s substrate specificity, we solved the structure of apo and bound A3A. I then used a systematic approach to quantify affinity for substrate as a function of sequence context, pH and substrate secondary structure. I found that A3A preferred ssDNA binding motif is T/CTCA/G, and that A3A can bind RNA in a sequence specific manner. The affinity for substrate increased with a decrease in pH. Furthermore, A3A binds tighter to its substrate binding motif when in the loop region of folded nucleic acid compared to a linear sequence. This result suggests that the structure of DNA, and not just its chemical identity, modulates A3 affinity and specificity for substrate.
4

Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo / Protein tertiary structure prediction with multi-objective techniques in monte carlo algorithm

Almeida, Alexandre Barbosa de 17 June 2016 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2016-08-05T17:38:42Z No. of bitstreams: 2 Dissertação - Alexandre Barbosa de Almeida - 2016.pdf: 11943401 bytes, checksum: 94f2e941bbde05e098c40f40f0f2f69c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-08-09T11:57:53Z (GMT) No. of bitstreams: 2 Dissertação - Alexandre Barbosa de Almeida - 2016.pdf: 11943401 bytes, checksum: 94f2e941bbde05e098c40f40f0f2f69c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-08-09T11:57:53Z (GMT). No. of bitstreams: 2 Dissertação - Alexandre Barbosa de Almeida - 2016.pdf: 11943401 bytes, checksum: 94f2e941bbde05e098c40f40f0f2f69c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-06-17 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Proteins are vital for the biological functions of all living beings on Earth. However, they only have an active biological function in their native structure, which is a state of minimum energy. Therefore, protein functionality depends almost exclusively on the size and shape of its native conformation. However, less than 1% of all known proteins in the world has its structure solved. In this way, various methods for determining protein structures have been proposed, either in vitro or in silico experiments. This work proposes a new in silico method called Monte Carlo with Dominance, which addresses the problem of protein structure prediction from the point of view of ab initio and multi-objective optimization, considering both protein energetic and structural aspects. The software GROMACS was used for the ab initio treatment to perform Molecular Dynamics simulations, while the framework ProtPred-GROMACS (2PG) was used for the multi-objective optimization problem, employing genetic algorithms techniques as heuristic solutions. Monte Carlo with Dominance, in this sense, is like a variant of the traditional Monte Carlo Metropolis method. The aim is to check if protein tertiary structure prediction is improved when structural aspects are taken into account. The energy criterion of Metropolis and energy and structural criteria of Dominance were compared using RMSD calculation between the predicted and native structures. It was found that Monte Carlo with Dominance obtained better solutions for two of three proteins analyzed, reaching a difference about 53% in relation to the prediction by Metropolis. / As proteínas são vitais para as funções biológicas de todos os seres na Terra. Entretanto, somente apresentam função biológica ativa quando encontram-se em sua estrutura nativa, que é o seu estado de mínima energia. Portanto, a funcionalidade de uma proteína depende, quase que exclusivamente, do tamanho e da forma de sua conformação nativa. Porém, de todas as proteínas conhecidas no mundo, menos de 1% tem a sua estrutura resolvida. Deste modo, vários métodos de determinação de estruturas de proteínas têm sido propostos, tanto para experimentos in vitro quanto in silico. Este trabalho propõe um novo método in silico denominado Monte Carlo com Dominância, o qual aborda o problema da predição de estrutura de proteínas sob o ponto de vista ab initio e de otimização multiobjetivo, considerando, simultaneamente, os aspectos energéticos e estruturais da proteína. Para o tratamento ab initio utiliza-se o software GROMACS para executar as simulações de Dinâmica Molecular, enquanto que para o problema da otimização multiobjetivo emprega-se o framework ProtPred-GROMACS (2PG), o qual utiliza algoritmos genéticos como técnica de soluções heurísticas. O Monte Carlo com Dominância, nesse sentido, é como uma variante do tradicional método de Monte Carlo Metropolis. Assim, o objetivo é o de verificar se a predição da estrutura terciária de proteínas é aprimorada levando-se em conta também os aspectos estruturais. O critério energético de Metropolis e os critérios energéticos e estruturais da Dominância foram comparados empregando o cálculo de RMSD entre as estruturas preditas e as nativas. Foi verificado que o método de Monte Carlo com Dominância obteve melhores soluções para duas de três proteínas analisadas, chegando a cerca de 53% de diferença da predição por Metropolis.

Page generated in 0.1084 seconds