• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 5
  • 4
  • 2
  • Tagged with
  • 21
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Funktionelle Charakterisierung der Interaktion der Protein-Tyrosin-Phosphatase PTP-BL mit Ephrin Bs

Eulenburg, Volker. January 2001 (has links) (PDF)
Bochum, Univ., Diss., 2002. / Computerdatei im Fernzugriff.
2

Funktionelle Charakterisierung der Interaktion der Protein-Tyrosin-Phosphatase PTP-BL mit Ephrin Bs

Eulenburg, Volker. January 2001 (has links) (PDF)
Bochum, Univ., Diss., 2002. / Computerdatei im Fernzugriff.
3

Untersuchungen zur Funktion der Protein-Tyrosin-Phosphatase PTPRR

Eickhoff, Jan. January 2003 (has links) (PDF)
Bayreuth, Univ., Diss., 2003. / Erscheinungsjahr an der Haupttitelstelle: 2002. Computerdatei im Fernzugriff.
4

Untersuchungen zur Funktion der Protein-Tyrosin-Phosphatase PTPRR

Eickhoff, Jan. January 2003 (has links) (PDF)
Bayreuth, Univ., Diss., 2003. / Erscheinungsjahr an der Haupttitelstelle: 2002. Computerdatei im Fernzugriff.
5

Funktionelle Charakterisierung der Interaktion der Protein-Tyrosin-Phosphatase PTP-BL mit Ephrin Bs

Eulenburg, Volker. January 2001 (has links) (PDF)
Bochum, Universiẗat, Diss., 2002.
6

Untersuchungen zur Funktion der Protein-Tyrosin-Phosphatase PTPRR

Eickhoff, Jan. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Bayreuth. / Erscheinungsjahr an der Haupttitelstelle: 2002.
7

Role of the novel protein tyrosine phosphatase AUM for cell adhesion / Die Rolle des neuen Proteins "Tyrosin phosphatase" AUM für Zell-Adhäsion

Saxena, Ambrish January 2011 (has links) (PDF)
Cell adhesion and migration are essential for development and homeostasis. Adhesion to the extracellular matrix occurs at specialized plasma membrane domains where transmembrane adhesion receptors, signaling proteins such as kinases and phosphatases, and a large number of adaptor proteins interact with the cytoskeleton in a tightly regulated and synchronized fashion. Whereas altered cell adhesion and migration are known to be important in cardiovascular disease and malignant tumors, the target proteins and molecular interactions that regulate these complex processes still remain incompletely understood. Whereas numerous kinases are known to regulate cell adhesion dynamics, information about the involved protein phosphatases is still very limited. A newly emerging phosphatase family contains the unconventional active site sequence DXDX(T/V) and belongs to the haloacid dehalogenase (HAD) superfamily of hydrolases. Our laboratory has recently discovered AUM, a novel phosphatase that belongs to this poorly characterized enzyme family. Initial findings pointed toward a potential involvement of AUM in the regulation of cell adhesion to the extracellular matrix. The objective of the present study was to study the potential role of AUM in cell adhesion. We could show that cells stably depleted of AUM are characterized by accelerated adhesion on immobilized fibronectin. To confirm these findings, we used an siRNA-based approach for the acute depletion of AUM and observed a similar phenomenon. Rescue experiments were performed with stably AUM-depleted cells to ensure that the above mentioned effects are indeed AUM specific. We observed that the re-addition of AUM normalizes cellular adhesion kinetics on fibronectin. These results clearly show that AUM exerts important functions in cell-matrix adhesion. To investigate the molecular basis of these effects, we have characterized integrin expression patterns using flow cytometry. Interestingly, fibronectin-stimulated AUM-depleted cells are characterized by an increase in the cell surface expression of conformationally active 1-integrins. Consistent with the important role of 1-integrins in the regulation of RhoA activity, we also observed a specific increase in RhoA-GTP, but not Rac1-GTP-levels during cell adhesion to fibronectin. Consistent with these findings and with the important role of RhoA for focal adhesion maturation, AUM depleted cells showed more elongated and more centripetally oriented focal adhesions as compared to control cells when spread on fibronectin. Taken together, this study has revealed an important role of AUM for cell-matrix adhesion. Our findings strongly suggest that AUM functions as a negative regulator of 1-integrins and RhoA-dependent cytoskeletal dynamics during cell adhesion. / Die Adhäsion und Migration von Zellen auf extrazellulären Matrixmolekülen ist essentiell für die Entwicklung und Homöostase vielzelliger Organismen. Die Adhäsion an extrazellulärer Matrix findet über spezialisierte Plasmamembran-Domänen statt, an denen transmembranäre Adhäsionsrezeptoren, Signalproteine wie Kinasen und Phosphatasen und eine große Anzahl von Adapterproteinen auf eng regulierte und synchronisierte Weise mit dem Zytoskelett interagieren. Während feststeht, dass Veränderungen der Zelladhäsion und Migration eine wichtige Rolle zum Beispiel bei kardiovaskulären Erkrankungen und bei metastasierenden Tumoren spielen, sind die Schlüsselmoleküle und Protein-Protein-Interaktionen, welche diese Prozesse regulieren immer noch unvollständig verstanden. Obwohl von zahlreichen Kinasen bekannt ist, dass sie die Zelladhäsions-Dynamik regulieren, existieren kaum Informationen über an diesen Prozessen beteiligte Phosphatasen. Seit Kurzem wird einer noch wenig charakterisierten Phosphatase-Familie mit der unkonventionellen Aminosäuresequenz DXDX(T/V) im aktiven Zentrum des Enzyms vermehrt Beachtung geschenkt. Diese Phosphatasen gehören zur Haloazid-Dehalogenase (HAD) Superfamilie von Hydrolasen. Unserem Labor ist es kürzlich gelungen, eine neue Phosphatase aus dieser Enzymfamilie zu identifizieren. Erste Befunde aus unserer Arbeitsgruppe weisen darauf hin, dass AUM möglicherweise an der Regulation der Zelladhäsion an extrazelluläre Matrixmoleküle beteiligt sein könnte. Das Ziel der vorliegenden Arbeit war es, die mögliche Rolle von AUM bei der Zelladhäsion genauer zu untersuchen. Es gelang uns zu zeigen, dass stabil AUM-shRNA exprimierende Zellen durch eine beschleunigte Adhäsion auf immobilisiertem Fibronektin gekennzeichnet sind. Um diese Befunde zu erhärten, wurde endogenes AUM mittels transienter Expression von siRNAs akut depletiert. Auch unter diesen Bedingungen konnte gezeigt werden, dass eine Reduktion der endogenen AUM-Proteinexpression die Zelladhäsion auf Fibronektin beschleunigt. Weiterhin wurden rescue-Experimente mit stabil AUM-depletierten Zellen durchgeführt, um sicherzustellen, dass die oben genannten Effekte spezifisch sind. Dabei wurde beobachtet, dass die Re-Expression von AUM die zelluläre Adhäsionskinetik auf Fibronektin normalisiert. Diese Ergebnisse belegen eindeutig, dass AUM wichtige Funktionen bei der Zell-Matrix-Adhäsion erfüllt. Um die molekulare Grundlage dieser Effekte zu untersuchen, haben wir zunächst das zelluläre Integrin-Expressionsmuster mittels Durchflußzytometrie charakterisiert. Interessanterweise konnte nachgewiesen werden, dass Fibronektin-stimulierte, AUM-depletierte Zellen vermehrt 1-Integrine in ihrer aktiven Konformation auf der Zelloberfläche exprimieren. Übereinstimmend mit der wichtigen Rolle von 1-Integrinen für die Regulation der RhoA-Aktivität konnten wir auch eine spezifische Zunahme der RhoA-GTP, nicht aber der Rac1-GTP-Spiegel während der Zelladhäsion auf Fibronektin beobachten. Konsistent mit diesen Ergebnissen und der bekannten Rolle von RhoA für die Reifung fokaler Adhäsionen, zeigten AUM-depletierte Zellen im Vergleich zu den Kontrollzellen vermehrt elongierte und zentripetal orientierte fokale Adhäsionen. Zusammengenommen ist es in der vorliegenden Arbeit gelungen, eine wichtige Rolle von AUM bei der Zell-Matrix-Adhäsion aufzudecken. Unsere Befunde legen nahe, dass AUM im Rahmen der Zell-Adhäsion als ein negativer Regulator von 1-Integrinen und der RhoA-abhängigen Zytoskelett-Dynamik fungiert.
8

Mechanistic insights into specificity determinants and catalytic properties of the haloacid dehalogenase-type phosphatase AUM / Aufklärung von Determinanten der Spezifität und der katalytischen Eigenschaften der Haloazid Dehalogenase-Typ Phosphatase AUM

Seifried, Annegrit January 2014 (has links) (PDF)
Mammalian haloacid dehalogenase (HAD)-type phosphatases are an emerging family of enzymes with important functions in physiology and disease. HAD phosphatases can target diverse metabolites, lipids, DNA, and serine/threonine or tyrosine phosphorylated proteins with often high specificity (Seifried et al., 2013). These enzymes thus markedly enlarge the repertoire and substrate spectrum of mammalian phosphatases. However, the basis of HAD phosphatase substrate specificity is still elusive and a number of mammalian HAD phosphatases remain uncharacterized to date. This study characterizes the biochemical and structural properties of AUM (aspartate-based, ubiquitous, Mg2+-dependent phosphatase), a previously unexplored mammalian HAD phosphatase. In vitro phosphatase assays of purified, recombinant AUM showed phosphatase activity towards para-nitrophenyl phosphate and adenine and guanine nucleotide di- and triphosphates. Inhibitor studies indicated that similar to other HAD superfamily members, the AUM-catalyzed dephosphorylation reaction proceeds via a pentacovalent phosphoaspartate intermediate. In line with an aspartate-based catalytic mechanism, AUM was insensitive to inhibitors of serine/threonine phosphatases. The characterization of the purified recombinant murine enzyme also revealed that AUM exists in equilibrium between dimers and tetramers. AUM was identified as the closest, yet functionally distinct relative of chronophin, a pyridoxal 5’-phosphate and serine/threonine-directed phosphatase. Phylogenetic analyses showed that AUM and chronophin evolved via duplication of an ancestral gene at the origin of the vertebrates. In contrast to chronophin, AUM acts as a tyrosine-specific HAD-type phosphatase in vitro and in cells. To elucidate how AUM and chronophin achieve these distinct substrate preferences, comparative evolutionary analyses, biochemical approaches and structural analyses were combined. Swapping experiments of less homologous regions between AUM and chronophin were performed. The mutational analysis revealed residues important for AUM catalysis and specificity. A single differently conserved residue in the cap domain of AUM or chronophin is crucial for phosphatase specificity (AUML204, chronophinH182). The X-ray crystal structure of the AUM cap fused to the catalytic core of chronophin (CAC, PDB: 4BKM) was solved to 2.65 Å resolution. It presents the first crystal structure of the murine AUM capping domain. The detailed view of the catalytic clefts of AUM and chronophin reveals the structural basis of the divergent substrate specificities. These presented findings provide insights into the design principles of capped HAD phosphatases and show that their substrate specificity can be encoded by a small number of predictable residues. In addition, the catalytic properties of AUM were investigated, identifying a mechanism of reversible oxidation regulating the activity of AUM in vitro. AUM phosphatase activity is inhibited by oxidation and can be recovered by reduction. The underlying molecular mechanism was revealed by mutational analyses. The cysteines C35, C104 and C243, located in the AUM core domain, are responsible for the inhibition of AUM by oxidation. C293 mediates the redox-dependent tetramerization of AUM in vitro. Based on the chronophin and CAC structure, a direct impact of the oxidation of C35 on the nucleophile D34 is proposed. In addition, a redox-dependent disulfide bridge (C104, C243), connecting the core and cap domain of AUM may be important for an open/close-mechanism. This hypothesis is supported by CD spectroscopy experiments that demonstrate a structural change in AUM upon reduction. These data present the first evidence for the regulation of AUM catalysis by reversible oxidation. This finding is so far unique in the field of HAD phosphatases. In this context, the first cell-based AUM activity assay was developed. For this, the artificial substrate pNPP was combined with the reducing agent DTT to create a specific AUM activity readout. This fractionation-based assay is the first tool to differentiate between cell lines or tissues with different AUM concentrations or activities. Taken together, the presented biochemical characterization reveals the specificity determinants and catalytic properties of AUM. General insights into structural determinants of mammalian HAD phosphatase substrate recognition are provided and reversible oxidation as possible regulatory mechanism for AUM is proposed. These findings constitute a framework for further functional analyses to elucidate the biomedical importance of AUM. / Enzyme der Klasse der Haloazid Dehalogenase (HAD)-Typ Phosphatasen in Säugern sind an einer Vielzahl biologischer Prozesse mit unmittelbarer Relevanz für Erkrankungen beteiligt. Ihre Funktionen sind jedoch nach wie vor nur rudimentär verstanden. Es ist bekannt, das HAD Phosphatasen, unterschiedliche Metabolite, Lipide und DNA, sowie an Serin/Threonin- oder Tyrosinresten phosphorylierte Proteine spezifisch dephosphorylieren (Seifried et al., 2013). Der Mechanismus dieser Substratspezifität ist bislang weitgehend unerforscht und einige HAD Phosphatasen in Säugern sind nach wie vor nicht charakterisiert. Diese Arbeit beschreibt die biochemischen und strukturellen Eigenschaften von AUM (Aspartat-basierte, ubiquitäre, Mg2+-abhängige Phosphatase), eine der bisher uncharakterisierten HAD Phosphatasen. In vitro Phosphatase-Assays mit gereinigtem, rekombinantem AUM zeigten, dass AUM kleinmolekulare Substrate wie z. B das artifizielle Substrat para-Nitrophenylphosphat und Adenin- und Guaninnukleotid Di- und Triphosphate dephosphorylieren kann. Inhibitorstudien bestätigten den Asparat-basierten Mechanismus der Katalyse für AUM. Des Weiteren zeigte die Charakterisierung des gereinigten rekombinanten murinen Enzyms, dass AUM in Lösung in einem dynamischen Verhältnis von Dimeren und Tetrameren vorliegt. AUM wurde als nächster Verwandter der Pyridoxal 5`-Phosphat und Serin/Threonin-gerichteten Phosphatase Chronophin identifiziert. Phylogenetische Analysen zeigten, dass AUM und Chronophin durch Duplikation eines gemeinsamen Vorläufergens zu Beginn der Vertebraten-Evolution entstanden sind. Beide Enzyme sind jedoch funktionell unterschiedlich; im Unterschied zu Chronophin zeigt AUM in Zellen und in vitro eine Tyrosin-gerichtete Phosphatase-Aktivität. Um die Basis der unterschiedlichen Substratpräferenz von AUM und Chronophin aufzuklären, wurden in der vorliegenden Arbeit evolutionsbiologische Analysen, biochemische Versuche und Strukturanalysen kombiniert. Durch den Austausch von Regionen geringer Homologie in AUM und Chronophin und die Bestimmung der Substratpräferenz der so generierten Mutanten wurden Reste identifiziert die für die Katalyse und Spezifität von AUM ausschlaggebend sind. So ist ein unterschiedlich konservierter Rest in der Cap-Domäne von AUM oder Chronophin (AUML204, ChronophinH182) entscheidend für die Spezifität der Phosphatasen. Die Struktur des CAC-Fusionsproteins (Cap-Domäne von AUM fusioniert mit der Core-Domäne von Chronophin) wurde röntgenstrukturanalytisch charakterisiert. Die gelöste CAC Struktur (2.65 Å, PDB: 4BKM) stellt die erste Struktur einer murinen AUM Cap-Domäne dar. Die Detailansicht der katalytischen Zentren von AUM und Chronophin zeigt den molekularen Aufbau der Substratspezifität der beiden Phosphatasen. Diese Daten geben Einblicke in den prinzipiellen Aufbau von HAD Phosphatasen mit Cap-Domäne und belegen, dass die Substratspezifität durch eine kleine Anzahl an vorhersagbaren Resten definiert werden kann. Zusätzlich wurden die katalytischen Eigenschaften von AUM untersucht. Es konnte gezeigt werden, dass die AUM-Aktivität in vitro durch reversible Oxidation reguliert wird. Die Phosphataseaktivität wird durch Oxidation inhibiert und kann durch Reduktion wiederhergestellt bzw. gesteigert werden. Der zugrunde liegende molekulare Mechanismus wurde mittels Mutationsanalysen aufgeklärt. Die Cysteine C35, C104 und C243 sind für die durch Oxidation ausgelöste Inhibition von AUM verantwortlich. Die identifizierten Reste sind an, für die Katalyse wichtigen Positionen, der AUM Core-Domäne lokalisiert. Abgeleitet aus der Chronophin und CAC Struktur hat die Oxidation von C35 möglicherweise Einfluss auf die Eigenschaften des Nukleophils D34 und trägt so zur Inhibition der Phosphatasefunktion von AUM bei. Zusätzlich könnte eine Disulfidbrücke (C104, C243), welche die AUM Cap- und Core-Domäne verknüpft; für einen Redox-abhängingen open/close-Mechanismus des Enzyms verantwortlich sein. Diese Hypothese wird durch CD-spektroskopische Analysen gestützt mit welchen eine strukturelle Veränderung von AUM unter reduzierenden Bedingungen nachgewiesen wurde. Eine Redox-vermittelte Modulation der AUM Struktur könnte so zur Inhibition beitragen. Diese Daten sind ein erster Hinweis auf eine mögliche Regulation von AUM durch reversible Oxidation. Bis jetzt ist diese Beobachtung für HAD Phosphatasen einzigartig. In diesem Zusammenhang wurde auch der erste zellbasierte AUM-Aktivitäts-Assay entwickelt. Durch die Kombination des artifiziellen Substrats pNPP und des Reduktionsmittels DTT konnte spezifisch AUM Phosphatase-Aktivität in diversen Zelllysaten gemessen werden. Dieser Assay, basierend auf der säulenchromatografischen Fraktionierung von Zell- oder Gewebelysaten, macht es nun möglich, Zelllinien oder Gewebe mit unterschiedlichen AUM Konzentrationen oder mit unterschiedlichen AUM-Aktivitäten zu differenzieren. Die Substratspezifität von Enzymen sowie die Modulation von zellulären Prozessen durch Oxidation sind wichtige Bestandteile der Signaltransduktion. Durch die vorliegende biochemische Charakterisierung konnten die Determinanten der Spezifität und der katalytischen Eigenschaften der HAD-Typ Phosphatase AUM aufgeklärt werden. Des Weiteren wurde die reversible Oxidation von AUM als möglicher Mechanismus zur Regulation der Enzymaktivität identifiziert. Die präsentierten Daten können als Grundlage für zukünftige Arbeiten zur Aufklärung einer biomedizinischen Relevanz der Phosphatase AUM dienen.
9

Einfluss niedermolekularer Protein-Tyrosin-Phosphatasen von Listeria monocytogenes auf die listerielle Genexpression und Virulenz

Gareiß, Barbara. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2006--Würzburg.
10

Die Funktion der vaskulären endothelialen Protein-Tyrosin-Phosphatase VE-PTP bei der Regulierung von interendothelialen Zell-Zellkontakten

Gamp, Alexander-Christian. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Münster (Westfalen).

Page generated in 0.0813 seconds