• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 24
  • 14
  • 12
  • 12
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 344
  • 344
  • 308
  • 286
  • 174
  • 126
  • 51
  • 45
  • 36
  • 36
  • 33
  • 31
  • 31
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Three-dimensional computational analysis of transport phenomena in a PEM fuel cell

Beming, Torsten 25 October 2018 (has links)
Fuel cells are electrochemical devices that rely on the transport of reactants (oxygen and hydrogen) and products (water and heat). These transport processes are coupled with electrochemistry and further complicated by phase change, porous media (gas diffusion electrodes) and a complex geometry. This thesis presents a three dimensional, non-isothermal computational model of a proton exchange membrane fuel cell (PEMFC). The model was developed to improve fundamental understanding of transport phenomena in PEMFCs and to investigate the impact of various operation parameters on performance. The model, which was implemented into a Computational Fluid Dynamics code, accounts for all major transport phenomena, including: water and proton transport through the membrane; electrochemical reaction; transport of electrons; transport and phase change of water in the gas diffusion electrodes; temperature variation; diffusion of multi-component gas mixtures in the electrodes; pressure gradients; multi-component convective heat and mass transport in the gas flow channels. Simulations employing the single-phase version of the model are performed for a straight channel section of a complete cell including the anode and cathode flow channels. Base case simulations are presented and analyzed with a focus on the physical insight, and fundamental understanding afforded by the availability of detailed distributions of reactant concentrations, current densities, temperature and water fluxes. The results are consistent with available experimental observations and show that significant temperature gradients exist within the cell, with temperature differences of several degrees Kelvin within the membrane-electrode-assembly. The three-dimensional nature of the transport processes is particularly pronounced under the collector plates land area, and has a major impact on the current distribution and predicted limiting current density. A parametric study with the single-phase computational model is also presented to investigate the effect of various operating, geometric and material parameters, including temperature, pressure, stoichiometric flow ratio, porosity and thickness of the gas diffusion layers, and the ratio between the channel with and the land area. The two-phase version of the computational model is used for a domain including a cooling channel adjacent to the cell. Simulations are performed over a range of current densities. The analysis reveals a complex interplay between several competing phase change mechanisms in the gas diffusion electrodes. Results show that the liquid water saturation is below 0.1 inside both anode and cathode gas diffusion layers. For the anode side, saturation increases with increasing current density, whereas at the cathode side saturation reaches a maximum at an intermediate current density (≈ 1.1Amp/cm2) and decreases thereafter. The simulation show that a variety of flow regimes for liquid water and vapour are present at different locations in the cell, and these depend further on current density. The PEMFC model presented in this thesis has a number of novel features that enhance the physical realism of the simulations and provide insight, particularly in heat and water management. The model should serve as a good foundation for future development of a computationally based design and optimization method. / Graduate
22

Rapid prototype development of PEM fuel cell gas delivery plates

Zheng, Rong 05 November 2018 (has links)
This research focuses on new rapid prototype development techniques for Proton Exchange Membrane (PEM) fuel cell gas delivery plates. The study addresses several key issues in the design, analysis and manufacturing of fuel cell plates. The approach combines theoretical modeling, experimental study, physical plate making process, and virtual prototyping to form a new scheme for the rapid prototype development of fuel cell plates. The research extends the newly introduced screen-printing layer deposition manufacturing technique to complete the entire cycle of rapid plate development. A number of key issues on plate materials and the layer deposition process are addressed. The study has identified the cause of the problem with the poster-ink based screen-print ink material, explored various alternative composite ink materials, and narrowed down to the promising “conductive polymer ∼ epoxy ∼ graphite power” composite. A new, concurrent approach for developing new composite materials through various experiments and material tests has been introduced, and demonstrated through the development of one particular ink composite with promising results. In this research, the method for virtual prototyping fuel cell gas delivery plate using advanced CAD/CAE commercial software is introduced. The method allows a “virtual prototype” of the fuel cell plate to be constructed and the performance of the plate to be evaluated through various analyses as “virtual prototype tests.” These include the prediction of fuel cell performance through the CFD calculation on the average oxygen concentration; as well as the assessments of the maximum stress and undesirable temperature variation on the printed fuel cell plate through finite element analysis. Design optimization is conducted using the virtual prototypes to improve the design of the flow field and the plate. Three disciplinary models are simulated and their results are subject to disciplinary optimizations. Global design optimization is carried out using multiple objective optimization, combining the functional performance measures from three disciplinary models. This multi-disciplinary optimization integrates performance considerations of PEM fuel cell plate, and provides guidelines to the plate development. The research contributes to a new approach for the rapid development of fuel cell plates with a great potential to be applied to other mechanical parts. The study also extends the methodology of computational design and rapid prototyping. / Graduate
23

Synthesis and characterisation of Pt-alloy oxygen reduction electrocatalysts for low temperature PEM fuel cells

Mohamed, Rhiyaad January 2012 (has links)
This dissertation the syntheses of Pt-based binary and ternary alloy electrocatalysts using the transition metals of Co and Ni are presented. These electrocatalysts were synthesised by an impregnation-reduction procedure at high temperature whereby Pt supported on carbon, (Pt/C (40 percent), was impregnated with the various metal and mixtures thereof and reduced at high temperatures in a H2 atmosphere. The procedure was also designed in such a way so as to prevent the oxidation of the support material (carbon black) during the alloy formation. The resultant nanoparticles (9-12 nm) of Pt3Co/C, Pt3Ni/C and Pt3Co0.5Ni0.5/C were also subjected to a post treatment procedure by acid washing (denoted AW) to produce electrocatalysts of Pt3Co/C-AW, Pt3Ni/C-AW and Pt3Co0.5Ni0.5/C-AW to study the effect of acid treatment on these electrocatalysts. The synthesised electrocatalysts were then characterised by a number of physical and electrochemical techniques and compared to that of commercial Pt/C (Pt/C-JM, HiSpec 4000) as well as Pt/C catalysts (Pt/C-900 and Pt/C-900-AW) treated under the same conditions used for the alloy synthesis. The electrocatalysts were then used to fabricate MEAs that were loaded into commercial single test cells and characterised by means of polarisation curves and Electrochemical Impedance Spectroscopy (EIS). The extensive physical characterisation included Powder X-Ray Diffraction (PXRD) analysis, Transmission Electron Microscopy (TEM), elemental analysis by Energy Dispersive Spectroscopy (EDS) and metal loading by Thermo-Gravimetric Analysis (TGA). These studies showed that Pt-based alloy electrocatalysts were successfully synthesised with particle sizes ranging from 9 - 12 nm, within their respective atomic ratios and whereby no significant loss of carbon support occurred. This indicated that significant sintering or electrocatalyst particles occurred when compared to that of the starting Pt/C catalyst (3 – 4 nm). From the combined results of the physical characterisation procedures, it was also shown that leaching as a result of acid washing was catalyst dependent with Ni containing catalysts showing a significant degree of leaching compared to that of Co containing catalysts. Electrochemical characterisation in terms of Electrochemical Active Surface Area (ECSA) by Cyclic Voltammetry (CV) and ORR activity by Rotating Disc Electrode (RDE) analysis revealed that a significant decrease in the ECSA resulted from the increase in particle size and this had a major influence on the ORR activity. Furthermore it was found that a significant improvement in the ORR activity was achieved by the synthesis of Pt-based alloys. It was also found that catalytic properties of the acid washed electrocatalysts were substantially different from that of non-acid washed electrocatalysts. The experimental data confirmed that it was possibly to achieve better catalytic performance as compared to that of Pt/C at a lower material cost when Pt is alloyed with base transition metals. The trend observed from the ORR activity studies by RDE was successfully repeated in the in-situ fuel cell testing in terms of mass activity of the electrocatalysts. Of the electrocatalysts studied under „real‟ fuel cell conditions Pt/C-JM had the best performance compared to the others, with the ternary Pt3Co0.5Ni0.5/C showing better catalytic performance compared to the Pt3Co/C electrocatalyst. This was found to be due to a higher charge transfer resistance observed in Pt3Co/C as compared to that of Pt3Co0.5Ni0.5/C which was similar than that of the commercial Pt/C-JM catalyst with both Pt3Co/C and Pt3Co0.5Ni0.5/C-AW having similar but higher ohmic resistances than that of Pt/C-JM as determined by electrochemical impedance spectroscopy. The results showed that a great potential exist to improve the catalytic performance of low temperature PEM fuel electrocatalysts at a reduced cost as compared to that of pure Pt provided a method of controlling the particle size was established.
24

Investigation of Thermodynamic and Transport Properties of Proton-Exchange Membranes in Fuel Cell Applications

Choi, Pyoungho 30 April 2004 (has links)
Proton exchange membrane (PEM) fuel cells are at the forefront among different types of fuel cells and are likely to be important power sources in the near future. PEM is a key component of the PEM fuel cells. The objective of this research is to investigate the fundamental aspects of PEM in terms of thermodynamics and proton transport in the membrane, so that the new proton conducting materials may be developed based on the detailed understanding. Since the proton conductivity increases dramatically with the amount of water in PEM, it is important to maintain a high humidification during the fuel cell operation. Therefore, the water uptake characteristics of the membrane are very important in developing fuel cell systems. Thermodynamic models are developed to describe sorption in proton-exchange membranes (PEMs), which can predict the complete isotherm as well as provide a plausible explanation for the long unresolved phenomenon termed Schroeder¡¯s paradox, namely the difference between the amounts sorbed from a liquid solvent versus from its saturated vapor. The sorption isotherm is a result of equilibrium established in the polymer-solvent system when the swelling pressure due to the uptake of solvent is balanced by the surface and elastic deformation pressures that restrain further stretching of the polymer network. The transport of protons in PEMs is intriguing. It requires knowledge of the PEM structure, water sorption thermodynamics in PEM, proton distribution in PEM, interactions between the protons and PEM, and proton transport in aqueous solution. Even proton conduction in water is anomalous that has received considerable attention for over a century because of its paramount importance in chemical, biological, and electrochemical systems. A pore transport model is proposed to describe proton diffusion at various hydration levels within Nafion¢ÃƒÂ§ by incorporating structural effect upon water uptake and various proton transport mechanisms, namely proton hopping on pore surface, Grotthuss diffusion in pore bulk, and ordinary mass diffusion of hydronium ions. A comprehensive random walk basis that relates the molecular details of proton transfer to the continuum diffusion coefficients has been applied to provide the transport details in the molecular scale within the pores of PEM. The proton conductivity in contact with water vapor is accurately predicted as a function of relative humidity without any fitted parameters. This theoretical model is quite insightful and provides design variables for developing high proton conducting PEMs. The proton transport model has been extended to the nanocomposite membranes being designed for higher temperature operation which are prepared via modification of polymer (host membrane) by the incorporation of inorganics such as SiO2 and ZrO2. The operation of fuel cells at high temperature provides many advantages, especially for CO poisoning. A proton transport model is proposed to describe proton diffusion in nanocomposite Nafion¢ÃƒÂ§/(ZrO2/SO42-) membranes. This model adequately accounts for the acidity, surface acid density, particle size, and the amount of loading of the inorganics. The higher proton conductivity of the composite membrane compared with that of Nafion is observed experimentally and also predicted by the model. Finally, some applications of PEM fuel cells are considered including direct methanol fuel cells, palladium barrier anode, and water electrolysis in regenerative fuel cells.
25

Development of new membranes for proton exchange membrane and direct methanol fuel cells

Yang, Bo, Ph. D. 14 May 2015 (has links)
Proton exchange membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC) are drawing much attention as alternative power sources for transportation, stationary, and portable applications. Nafion membranes are presently used in both PEMFC and DMFC as electrolytes, but are confronted with a few difficulties: (i) high cost, (ii) limited operating temperature of < 100 °C, and (iii) high methanol permeability. With an aim to overcome some of the problems encountered with the Nafion membranes, this dissertation focuses on the design and development of a few materials systems for use in PEMFC and/or DMFC. The incorporation of hydrous Ta₂O₅·nH₂O into Nafion membrane as well as the electrodes is shown to help the cell to retain water to higher temperatures. Membrane-electrode assembly (MEA) consisting of the composite membrane shows better cell performance at 100 and 110 °C than that with plain Nafion membrane, and a high power density of ~ 650 mW/cm² at 100 °C is obtained with H₂ - CO mixture as the fuel due to a significant alleviation of the CO poisoning of the catalysts. Sulfonated poly(etheretherketone) (SPEEK) membranes with various sulfonation levels are prepared and investigated in DMFC. With a sulfonation level of ~ 50 %, the SPEEK membranes exhibit low methanol permeability and electrochemical performance comparable to that of Nafion at around 60 °C, making it an attractive low-cost alternative to Nafion. From a comparative study of the structural evolutions with temperature in 2 M methanol solution, it is found that the lower methanol permeability of SPEEK membranes is related to the less connected and narrower pathways for water/methanol permeation. The dry proton conductor CsHSO₄ shows a high proton conductivity of ~ 10⁻³ S/cm at temperatures > 140 °C and water is not needed for proton conduction. However, it is found that CsHSO₄ decomposes to Cs₂SO₄ and H₂S at 150 °C in H₂ atmosphere in contact with the Pt/C catalyst. Thus, new catalyst materials need to be explored for CsHSO₄ to be used in practical high temperature PEMFC. Thin self-humidifying Nafion membranes with dispersed Pt/C catalyst powder are prepared and tested in PEMFC with dry H₂ and O₂. The Pt/C particles provide sites for catalytic recombination of H₂ and O₂ permeating from the anode and cathode, and the water produced at these sites directly humidifies the membrane. The performance of the cell with the self-humidifying membrane operated with dry reactants is ~ 90 % of that obtained with well humidified H₂ and O₂. / text
26

Modeling and analysis of a PEM fuel cell system for a quadruped robot

Lee, Heon Joong, Choe, Song-Yul, January 2009 (has links)
Thesis--Auburn University, 2009. / Abstract. Vita. Includes bibliographical references (p. 113-115).
27

Analysis and optimization of current collecting systems in PEM fuel cells

Li, Peiwen, Ki, Jeong-Pill, Liu, Hong January 2012 (has links)
This paper presents analytical and experimental studies on optimization of the gas delivery and current collection system in a proton exchange membrane (PEM) fuel cell for the objective of reducing ohmic loss, thereby achieving higher power density. Specifically, the dimensions of current collection ribs as well as the rib distribution were optimized to get a maximized power density in a fuel cell. In the modeling process, the power output from a fixed area of membrane is calculated through analysis of an electrical circuit simulating the current from electrochemical reaction flowing to the current collectors. Current collectors of two-dimensional ribs and three-dimensional pillars were considered. Analyses found that three-dimensional pillars allow higher power density in a PEM fuel cell. Considering the mass transfer enhancement effect, three-dimensional pillars as current collectors in gas flow field may be a good choice if the fuel cell operates at low current density and there is no liquid water blocking the flow channels. The analyses did not consider the existence of liquid water, meaning the current density is not very high. The study concluded that decreasing the size of both the current collector and its control area yields a significant benefit to a higher power density. A preliminary experimental test in a PEM fuel cell has verified the conclusion of the analytical work.
28

PEM Fuel Cells Redesign Using Biomimetic and TRIZ Design Methodologies

Fung, Keith Kin Kei 31 December 2010 (has links)
Two formal design methodologies, biomimetic design and the Theory of Inventive Problem Solving, TRIZ, were applied to the redesign of a Proton Exchange Membrane (PEM) fuel cell. Proof of concept prototyping was performed on two of the concepts for water management. The liquid water collection with strategically placed wicks concept demonstrated the potential benefits for a fuel cell. Conversely, the periodic flow direction reversal concepts might cause a potential reduction water removal from a fuel cell. The causes of this water removal reduction remain unclear. In additional, three of the concepts generated with biomimetic design were further studied and demonstrated to stimulate more creative ideas in the thermal and water management of fuel cells. The biomimetic design and the TRIZ methodologies were successfully applied to fuel cells and provided different perspectives to the redesign of fuel cells. The methodologies should continue to be used to improve fuel cells.
29

PEM Fuel Cells Redesign Using Biomimetic and TRIZ Design Methodologies

Fung, Keith Kin Kei 31 December 2010 (has links)
Two formal design methodologies, biomimetic design and the Theory of Inventive Problem Solving, TRIZ, were applied to the redesign of a Proton Exchange Membrane (PEM) fuel cell. Proof of concept prototyping was performed on two of the concepts for water management. The liquid water collection with strategically placed wicks concept demonstrated the potential benefits for a fuel cell. Conversely, the periodic flow direction reversal concepts might cause a potential reduction water removal from a fuel cell. The causes of this water removal reduction remain unclear. In additional, three of the concepts generated with biomimetic design were further studied and demonstrated to stimulate more creative ideas in the thermal and water management of fuel cells. The biomimetic design and the TRIZ methodologies were successfully applied to fuel cells and provided different perspectives to the redesign of fuel cells. The methodologies should continue to be used to improve fuel cells.
30

The effectivness of using a non-platinum material combination for the catalyst layer of a proton exchange membrane fuel cell

Reddy, Dwayne Jensen January 2016 (has links)
Submitted in the fulfillment of the requirements for the Master of Engineering, Durban University of Technology, Durban, South Africa. 2016. / The effectiveness of using a low cost non - platinum (Pt) material for the catalyst layer of a polymer electrolyte fuel cell (PEMFC) was investigated. A test cell and station was developed. Two commercial Pt loaded membrane electrode assemblies (MEA) and one custom MEA were purchased from the Fuelcelletc store. Hydrogen and oxygen were applied to either side of the custom MEA which resulted in an additional sample tested. An aluminium flow field plate with a hole type design was manufactured for the reactants to reach the reaction sites. End plates made from perspex where used to enclose the MEA, flow field plates, and also to provide reactant inlet and outlet connection points. The developed test station consisted of hydrogen and oxygen sources, pressure regulators, mass flow controllers, heating plate, and humidification units. A number of experimental tests were carried out to determine the performance of the test cells. These tests monitored the performance of the test cell under no-load and loaded conditions. The tests were done at 25 °C and 35 °C at a pressure of 0.5 bar and varying hydrogen and oxygen volume flow rates. The no-load test showed that the MEA’s performed best at high reactant flow rates of 95 ml/min for hydrogen and 38 ml/min for oxygen. MEA 1, 2, 3, and 4 achieved an open circuit voltage (OVC) of 0.936, 0.855, 0.486 and 0.34 V respectively. The maximum current density achieved for the MEAs were 0.3816, 0.284, 15x10-6, and 50x10-6 A/cm2. Under loaded conditions the maximum power densities achieved at 25 °C for MEA’s 1, 2, 3, and 4 were 0.05, 0.038, 2.3x10-6, 1.99x10-6 W/cm2 respectively. Increasing the temperature by 10°C for MEA 1, 2, 3, 4 resulted in a 16.6, 22.1, 1.79, 10.47 % increase in the maximum power density. It was found that increasing platinum loading, flow rates, and temperature improved the fuel cell performance. It was also found that the catalytic, stability and adsorption characteristics of silver did not improve when combining it with iridium (Ir) and ruthenium oxide (RuOx) which resulted in low current generation. The low maximum power density thus achieved at a reduced cost is not feasible. Thus further investigation into improving the catalytic requirements of non Pt based catalyst material combinations is required to achieve results comparable to that of a Pt based PEMFC. / M

Page generated in 0.0798 seconds