• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 23
  • 12
  • 12
  • 12
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 303
  • 303
  • 303
  • 261
  • 157
  • 116
  • 41
  • 34
  • 31
  • 31
  • 29
  • 28
  • 28
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Development of new membranes based on aromatic polymers and heterocycles for fuel cells

Fu, Yongzhu, 1977- 18 August 2011 (has links)
Not available / text
82

High Temperature Proton Exchange Membrane Fuel Cell Optimization of Flow Channel Geometry

Hartz, Alexandra January 2013 (has links)
Several groups are studying and researching major factors which influence high temperature proton exchange membrane fuel cells. These factors include material type, temperature, and fuel cell lifespan. Only a few groups research the optimization of the size of the fuel channels within the fuel cell. For channel optimization, a model was created to find the optimum flow channel and rib widths. The approach used was to code the losses due to activation, concentration, and ohmic polarizations to yield the fuel cell voltage and power expected from the fuel cell itself. The model utilizes the specified cell parameters including the material properties, fuel cell temperature, and channel size. This method gives an initial view of how a fuel cell will perform given specific parameters. It is not limited to one fuel cell size, allowing future research efforts to utilize this model to optimize flow channels in a variety of fuel cells.
83

Testing Protocol Development for a Proton Exchange Membrane Fuel Cell

Page, Shannon Charles January 2007 (has links)
Fuel cell technology has undergone significant development in the past 15 years, spurred in part by its unique energy conversion characteristics; directly converting chemical energy to electrical energy. As fuel cell technology has past through the prototype/pre-commercialisation development, there is increasing interest in manufacturing and application issues. Of the six different fuel cell types pursued commercially, the Proton Exchange Membrane (PEM) fuel cell has received the greatest amount of research and development investment due to its suitability in a variety of applications. A particular application, to which state-of-the art PEMFC technology is suited, is backup/uninterruptible power supply (UPS) systems, or stand-by power systems. The most important feature of any backup/UPS system is reliability. Traditional backup power systems, such as those utilising valve regulated lead acid (VRLA) batteries, employ remote testing protocols that acquire battery state-of-health and state-of-charge information. This information plays a critical role in system management and reliability assurance. A similar testing protocol developed for a PEM fuel cell would be a valuable contribution to the commercialization of these systems for backup/UPS applications. This thesis presents a novel testing and analysis procedure, specifically designed for a PEM fuel cell in a backup power application. The test procedure electronically probes the fuel cell in the absence of hydrogen. Thus, the fuel cell is in an inactive, or passive, state throughout the testing process. The procedure is referred to as the passive state dynamic behaviour (PSDB) test. Analysis and interpretation of the passive test results is achieved by determining the circuit parameter values of an equivalent circuit model (ECM). A novel ECM of a fuel cell in a passive state is proposed, in which physical properties of the fuel cell are attributed to the circuit model components. Therefore, insight into the physical state of the fuel cell is achieved by determining the values of the circuit model parameters. A method for determining the circuit parameter values of many series connected cells (a stack) using the results from a single stack test is also presented. The PSDB test enables each cell in a fuel cell stack to be tested and analysed using a simple procedure that can be incorporated into a fuel cell system designed for backup power applications. An experimental system for implementing the PSDB test and evaluating the active performance of three different PEM fuel cells was developed. Each fuel cell exhibited the same characteristic voltage transient when subjected to the PSDB test. The proposed ECM was shown to accurately model the observed transient voltage behaviour of a single cell and many series connected cells. An example of how the PSDB test can provide information on the active functionality of a fuel cell is developed. This method consists of establishing baseline performance of the fuel cell in an active state, in conjunction with a PSDB test and identification of model parameter values. A subsequent PSDB test is used to detect changes in the state of the fuel cell that correspond to performance changes when the stack is active. An explicit example is provided, where certain cells in a stack were purposefully humidified. The change in state of the cells was identified by the PSDB test, and the performance change of the effected cells was successfully predicted. The experimental test results verify the theory presented in relation to the PSDB test and equivalent circuit model.
84

Cathode durability in PEM fuel cells

Redmond, Erin Leigh 13 January 2014 (has links)
Proton exchange membrane (PEM) fuel cells are competitive with other emerging technologies that are being considered for automotive transportation. Commercialization of PEM fuel cells would decrease emissions of criteria pollutants and greenhouse gases and reduce US dependence on foreign oil. However, many challenges exist that prevent this technology from being realized, including power requirements, durability, on-board fuel storage, fuel distribution, and cost. This dissertation focuses on fuel-cell durability, or more specifically catalyst stability. New techniques to comprehensively observe and pin-point degradation mechanisms are needed to identify stable catalysts. In this text, an in operando method to measure changes in catalyst particle size at the cathode of a PEM fuel cell is demonstrated. The pair distribution function analysis of X-ray diffraction patterns, generated from an operating fuel cell exposed to accelerated degradation conditions, was used to observe the growth of catalyst particles. The stability of Pt/C and PtCo/C electrodes, with different initial particle sizes, was monitored over 3000 potential cycles. The increase in particle size was fit to a linear trend as a function of cycle number for symmetric linear sweeps of potential. The most stable electrocatalyst was found to be alloyed PtCo with a larger initial particle size. A better understanding of oxide growth kinetics and its role in platinum dissolution is needed to develop a comprehensive fuel-cell performance model. There is an ongoing debate present in the current literature regarding which oxide species are involved in the oxide growth mechanism. This dissertation discusses the results of in operando X-ray absorption spectroscopy studies, where it was found that PtO2 is present at longer hold times. A new method to quantify EXAFS data is presented, and the extent of oxidation is directly compared to electrochemical data. This comparison indicated that PtO2 was formed at the expense of an initial oxide species, and these steps were included in a proposed mechanism for platinum oxidation. Simulations of platinum oxidation in literature have yet to fully replicate an experimental cyclic voltammogram. A modified Butler-Volmer rate equation is presented in this thesis. The effect of including an extra parameter, χ, in the rate equations was explored. It was found that while the χ-parameter allowed the cathodic peak width to be decoupled from the Tafel slope for the platinum-oxide reduction, its inclusion could not address all observed experimental characteristics. Exploration of this concept concluded that current is not a function of only potential and coverage. To that end, a heterogeneous oxide layer was introduced. In this model, place-exchanged PtO2 structures of varying energy states are formed through a single transition state. This treatment allowed, for the first time, the simulation of the correct current-potential behavior under varying scan rates and upper potential limits. Particle size plays a critical role in catalysts stability. The properties of nanoparticles can differ significantly from bulk values, yet few tools exist to measure these values at the nanoscale. Surface stress and surface energy are diagnostic criterion that can be used to differentiate nano from bulk properties. The pair distribution function technique was used to measure lattice strain and particle size of platinum nanoparticles supported on carbon. The effect of adsorbates on surface stress was examined and compared to previous literature studies. Furthermore, a methodology for measuring the surface energy of supported platinum nanoparticles has been developed. While the results of this work are significant, many more challenges need to be addressed before fuel-cell vehicles are marketed. Recommendations for future work in the field of catalyst durability are addressed.
85

Current and Temperature Distributions in Proton Exchange Membrane Fuel Cell

Alaefour, Ibrahim January 2012 (has links)
Proton exchange membrane fuel cell (PEMFC) is a potential alternative energy conversion device for stationary and automotive applications. Wide commercialization of PEMFC depends on progress that can be achieved to enhance its reliability and durability along with cost reduction. It is desirable to operate the PEMFC at uniform local current density and temperature distributions over the surface of the membrane electrode assembly (MEA). Non-uniform distributions of both current and temperature over the MEA could result in poor reactant and catalyst utilization as well as overall cell performance degradation. Local current distribution in the PEMFC electrodes are closely related to operating conditions, but it is also affected by the organization of the reactant flow arrangements in PEMFCs. Reactant depletion and water formation along the flow channel leads to current variation from the channel inlet to the exit, which leads to non-uniformity of local electrochemical reaction activity, and degradation of the cell performance. Flow arrangements between the anode and cathode streams, such as co-, counter- and cross- flow can exacerbate the effect of the non-uniformity considerably, producing complex current distribution patterns over the electrode surfaces. Thus, understanding of the local current density and its spatial characteristics, as well as the temperature distributions under different physical and operating conditions, is crucially important in order to develop optimum design and operational strategies. Despite the importance of the influence of the flow arrangement on the local current and temperature distributions under various operating conditions, few systematic studies have been conducted experimentally to investigate this effect. In this research, an experimental setup with special PEMFC test cells are designed and fabricated in-house, in order to conduct in-situ mapping of the local current and temperature distributions over the electrode surfaces. A segmented flow field plate and the printed circuit board (PCB) technique is used to measure the current distribution in a single PEMFC. In situ, nondestructive temperature measurements are conducted using thermocouples to determine the actual temperature distribution. Experimental studies have been conducted to investigate the effect of different flow arrangements between the anode and cathode (co-, counter-, and cross- flow) on the local current density distribution over the MEA surface. Furthermore, local current distribution has been characterized for PEMFCs under various operating conditions such as reactant stoichiometry ratios, reactant backpressure, cell temperature, cell potentials, and relative humidity for each one of the reactant flow arrangements. The dynamic characteristics of the local current in PEMFC under different operating conditions also have been studied. Temperature distributions along the parallel and serpentine flow channels in PEMFs under various operating conditions are also investigated. All independent tests are conducted to identify and optimize the key design and operational parameters for both local current and temperature distributions. It has been found that the local current density distribution is strongly affected by the flow arrangement between the anode and cathode streams and the key operating conditions. It has also been observed that the counter-flow arrangement generates the most uniform distribution for the current density, whereas the co-flow arrangement results in a considerable variation in the current density from the reactant gas stream inlet to the exit. Low stoichiometry ratio of hydrogen at the anode side has a predominant effect on the current distribution and cell performance. Further, it has been found that the dynamic characteristics and the degree of fluctuation of local current density inside PEMFC are strongly influenced by the crucial operating conditions. In-situ, nondestructive temperature measurements indicate that the temperature distribution inside the PEMFC is strongly sensitive to the cell’s current density. The temperature distribution inside the PEMFC seems to be virtually uniform at low current density, while the temperature variation increases up to 2 oC at the high current density. Finally, the present work contribution related to the local current and temperature distributions is required to understand the effect of each individual or even several operating parameters combined together on the local current and temperature distributions. This will help to develop an optimum design, which leads to enhancing the reliability and durability in operational PEMFCs.
86

In-situ electrical terminal characterization of fuel cell stacks

Seger, Eric Matthew. January 1900 (has links) (PDF)
Thesis (MS)--Montana State University--Bozeman, 2009. / Typescript. Chairperson, Graduate Committee: Steven R. Shaw. Includes bibliographical references (leaves 55-56).
87

Model development of a polymer electrolyte membrane fuel cell to predict steady and unsteady behavior

Mishra, Bikash, January 2008 (has links)
Thesis (Ph.D.)--Mississippi State University. Bagley College of Engineering. / Title from title screen. Includes bibliographical references.
88

A model of degredation in a polymer electrolyte membrane /

King, C. Jordan. Unknown Date (has links)
Thesis (M.S.)--Humboldt State University, 2009. / Includes bibliographical references (leaves 56-58). Also available via Humboldt Digital Scholar.
89

Reduction of methanol crossover in direct methanol fuel cells by an integrated anode structure and composite electrolyte membrane /

Zhang, Haifeng. January 2010 (has links)
Includes bibliographical references (p. 115-129).
90

The development and implementation of high-throughput tools for discovery and characterization of proton exchange membranes

Reed, Keith Gregory. January 2009 (has links)
Thesis (Ph.D)--Chemical Engineering, Georgia Institute of Technology, 2010. / Committee Chair: Meredith, Carson; Committee Member: Bucknall, David; Committee Member: Fuller, Tom; Committee Member: Griffin, Anselm; Committee Member: Koros, William. Part of the SMARTech Electronic Thesis and Dissertation Collection.

Page generated in 0.3608 seconds