• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 2
  • 1
  • Tagged with
  • 27
  • 15
  • 13
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Comparison of Protostars in Diverse Star-Forming Environments

Kryukova, Erin January 2011 (has links)
No description available.
12

A Hubble Space Telescope Study of Protostellar Outflows:How Feedback and Structure in the Interstellar Environment Clear and Shape Cavities

Habel, Nolan 15 September 2022 (has links)
No description available.
13

Mass accretion in the embedded phase of low-mass star formation

Dunham, Michael Mark 02 November 2010 (has links)
A long-standing problem in low-mass star formation is the "luminosity problem," whereby protostars are underluminous compared to the accretion luminosity expected both from theoretical collapse calculations and arguments based on the minimum accretion rate necessary to form a star within the embedded phase duration. In this dissertation, I present new research on protostars and the protostellar accretion process that addresses the luminosity problem in the following ways: I report new infrared detections of a very low luminosity protostar in Taurus and use all existing data ranging from the infrared through millimeter wavelengths to constrain radiative transfer models and determine physical properties of the source. I argue that the derived source luminosity is lower than that expected based on the properties of a previously detected molecular outflow driven by this source and suggest that this discrepancy can be resolved by variable rather than constant mass accretion. I report the discovery of a new protostar that is also driving a molecular outflow. Following a similar modeling procedure as above, I show that this source has an even lower luminosity that is once again inconsistent with that expected based on the properties of its outflow, again suggesting variable mass accretion. I present the results of a complete search for all protostars with luminosities less than or equal to that of our Sun in a new infrared survey of nearby star-forming regions. I identify 50 protostars with such luminosities. Only a small fraction (15-25%) of dense cores thought to be starless (not yet collapsing to form stars) in fact harbor low luminosity protostars. The distribution of luminosities of these 50 protostars is inconsistent with a constant protostellar mass accretion rate. I present a set of evolutionary models that start with existing models following the inside-out collapse of singular isothermal spheres and add isotropic scattering off dust grains, a circumstellar disk, two-dimensional envelope structure, mass-loss and the opening of outflow cavities, and a simple treatment of episodic mass accretion. I conclude that episodic mass accretion is both necessary and sufficient to resolve the luminosity problem. / text
14

Dynamical properties of embedded protostars and the luminosity function of the galactic disk /

Covey, Kevin R. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (p. 204-213).
15

Formation of freely floating sub-stellar objects via close encounters

Vorobyov, Eduard I., Steinrueck, Maria E., Elbakyan, Vardan, Guedel, Manuel 13 December 2017 (has links)
Aims. We numerically studied close encounters between a young stellar system hosting a massive, gravitationally fragmenting disk and an intruder diskless star with the aim of determining the evolution of fragments that have formed in the disk prior to the encounter. Methods. Numerical hydrodynamics simulations in the non-inertial frame of reference of the host star were employed to simulate the prograde and retrograde co-planar encounters. The initial configuration of the target system (star plus disk) was obtained via a separate numerical simulation featuring the gravitational collapse of a solar-mass pre-stellar core. Results. We found that close encounters can lead to the ejection of fragments that have formed in the disk of the target prior to collision. In particular, prograde encounters are more efficient in ejecting the fragments than the retrograde encounters. The masses of ejected fragments are in the brown-dwarf mass regime. They also carry away an appreciable amount of gas in their gravitational radius of influence, implying that these objects may possess extended disks or envelopes, as also previously suggested. Close encounters can also lead to the ejection of entire spiral arms, followed by fragmentation and formation of freely-floating objects straddling the planetary mass limit. However, numerical simulations with a higher resolution are needed to confirm this finding.
16

Characterizing the Role of Feedback and Protostellar Properties in the Orion Molecular Clouds

Booker, Joseph J. January 2017 (has links)
No description available.
17

Characterizing Dust and Ice Toward Protostars in the Orion Molecular Cloud Complex

Poteet, Charles Allen 18 December 2012 (has links)
No description available.
18

Chemical evolution in low-mass star forming cores

Chen, Jo-Hsin 02 November 2010 (has links)
In this thesis, I focus on the physical and chemical evolution at the earliest stages of low-mass star formation. I report results from the Spitzer Space Telescope and molecular line observations of 9 species toward the dark cloud L43, a survey of 10 Class 0 and 6 Class I protostars with 8 molecular lines, and a survey of 9 Very Low Luminosity Objects (VeLLOs) with 11 molecular lines. From the observational results, CO depletion is extensively observed with C¹⁸O(2-1) maps. A general evolutionary trend is also seen toward the Class 0 and I samples: higher deuterium fractionation at higher CO depletion. For the VeLLO candidates and starless cores with N₂D⁺(3-2) detection, we found the deuterium ratio of N₂D⁺/N₂H⁺ is higher comparing with the Class 0 and I samples. We use DCO⁺(3-2) maps to trace the velocity structures. Also, HCO⁺(3-2) blue profiles are seen toward the VeLLO candidate L328, indicating possible infall. To test theoretical models and to interpret the observations, we adopt a modeling sequence with self-consistent calculations of dust radiative transfer, gas energetics, chemistry, and line radiative transfer. In the L43 region described in Chapter 2, a starless core and a Class I protostar are evolving in the same environment. We modeled both sources with the same initial conditions to test the chemical characteristics with and without protostellar heating. The physical model consists of a series of Bonner-Ebert spheres describing the pre-protostellar (PPC) stages following by standard inside-out collapse (Shu 1977). The model best matches the observed lines suggests a longer total timescale at the PPC stage, with faster evolution at the later steps with higher densities. In Chapter 3, we modeled the entire group of Class 0 and I protostars. The trend of decreasing deuterium ratio can be seen after the temperature is high enough for CO to evaporate. After the evaporation, the history of heavy depletion (e.g, from longer PPC timescales or different grain surface properties) no longer affects the line intensities of gas-phase CO. The HCO⁺ blue profiles, which are used as infall indicators, are predicted to be observed when infall is beyond the CO evaporation front. The low luminosity of VeLLOs cannot be explained by standard models with steady accretion, and we tested an evolutionary model incorporating episodic accretion to investigate the thermal history and chemical behaviors. We tested a few chemical parameters to compare with the observations and the results from Chapter 2 and 3. The modeling results from episodic accretion models show that CO and N₂ evaporate from grain mantle surfaces at the accretion bursts and can freeze back onto grain surfaces during the long periods of quiescent phases. Deuterated species, such as N₂D⁺ and H₂D⁺, are most sensitive to the temperature. Possible good tracers for the thermal history include the line intensities of gas-phase N₂H+ relative to CO, as well as CO₂ and CO ice features. / text
19

EVOLUTION OF MASS OUTFLOW IN PROTOSTARS

Watson, Dan M., Calvet, Nuria P., Fischer, William J., Forrest, W. J., Manoj, P., Megeath, S. Thomas, Melnick, Gary J., Najita, Joan, Neufeld, David A., Sheehan, Patrick D., Stutz, Amelia M., Tobin, John J. 29 August 2016 (has links)
We have surveyed 84 Class 0, Class I, and flat-spectrum protostars in mid-infrared [Si II], [Fe II], and [S I] line emission, and 11 of these in far-infrared [O I] emission. We use the results to derive their mass. outflow rates, (M) over dot(w). Thereby we observe a strong correlation of (M) over dot(w) with bolometric luminosity, and with the inferred mass accretion rates of the central objects, (M) over dot(a), which continues through the Class 0 range the trend observed in Class II young stellar objects. Along this trend from large to small mass. flow rates, the different classes of young stellar objects lie in the sequence Class 0-Class I/flat-spectrum-Class II, indicating that the trend is an evolutionary sequence in which (M) over dot(a) and (M) over dot(w) decrease together with increasing age, while maintaining rough proportionality. The survey results include two that. are key tests of magnetocentrifugal outflow-acceleration mechanisms: the distribution of the outflow/accretion branching ratio b = (M) over dot(w)/(M) over dot(a), and limits on the distribution of outflow speeds. Neither rules out any of the three leading outflow-acceleration, angular-momentum-ejection mechanisms, but they provide some evidence that disk winds and accretion-powered stellar winds (APSWs) operate in many protostars. An upper edge observed in the branching-ratio distribution is consistent with the upper bound of b = 0.6 found in models of APSWs, and a large fraction (31%) of the sample have a. branching ratio sufficiently small that only disk winds, launched on scales as large as several au, have been demonstrated to account for them.
20

The role of protostellar heating in star formation

Jones, Michael Oliver January 2018 (has links)
Previous studies have shown that thermal feedback from protostars plays a key role in the process of low-mass star formation. In this thesis, we explore the effects of protostellar heating on the formation of stellar clusters. We describe new methods for modelling protostellar accretion luminosities and protostellar evolution in calculations of star formation. We then present results of a series of numerical simulations of stellar cluster formation which include these effects, and examine their impact. We begin by investigating the dependence of stellar properties on the initial density of molecular clouds. We find that the dependence of the median stellar mass on the initial density of the cloud is weaker than the dependence of the thermal Jeans mass when radiative effects are included. We suggest that including protostellar accretion luminosities and protostellar evolution may weaken this dependence further, and may account for the observed invariance of the median stellar mass in Galactic star-forming regions. Next, we investigate the effects of including accretion feedback from sink particles on the formation of small stellar groups. We find that including accretion feedback in calculations suppresses fragmentation even further than calculations that only include radiative transfer within the gas. Including feedback also produces a higher median stellar mass, which is insensitive to the sink particle accretion radius used. Finally, we compare calculations of small stellar clusters which model the evolution of protostars using a live stellar model with those which use a fixed stellar structure. We find that the dynamics of the clusters are primarily determined by the accretion luminosities of protostars, but that the relative effects of protostellar evolution depend on the accretion rate and advection of energy into the protostar. We also demonstrate how such calculations may be used to study the properties of young stellar populations.

Page generated in 0.0748 seconds