• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um provador de teoremas baseado em tableaux para verificação de propriedades temporais de conhecimento ou crença

Vieira, Thiago Coelho 07 January 2015 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, Mestrado em Informática, 2015. / Submitted by Albânia Cézar de Melo (albania@bce.unb.br) on 2015-03-31T15:40:32Z No. of bitstreams: 1 2015_ThiagoCoelhoVieira.pdf: 662085 bytes, checksum: 8fae3df1c74c85937e5cd8c48823b60b (MD5) / Approved for entry into archive by Ruthléa Nascimento(ruthleanascimento@bce.unb.br) on 2015-04-20T19:01:54Z (GMT) No. of bitstreams: 1 2015_ThiagoCoelhoVieira.pdf: 662085 bytes, checksum: 8fae3df1c74c85937e5cd8c48823b60b (MD5) / Made available in DSpace on 2015-04-20T19:01:54Z (GMT). No. of bitstreams: 1 2015_ThiagoCoelhoVieira.pdf: 662085 bytes, checksum: 8fae3df1c74c85937e5cd8c48823b60b (MD5) / Diversos tipos de lógicas são usadas como linguagens para descrever sistemas complexos e suas propriedades com a finalidade de serem verificadas formalmente. Provadores de teoremas baseados em tableaux são ferramentas computacionais capazes de realizar esta tarefa de verificação. Em (WDF98) é proposto um método de prova baseado em tableaux para duas lógicas epistêmico-temporais, KL(n) e BL(n). Neste trabalho implementamos o método de prova baseado em tableaux descrito em (WDF98) e apresentamos um algoritmo para verificação de propriedades epistêmicas e temporais sobre a estrutura do tableau construída por este método. / Logics are used as languages to describe complex systems and their properties in order to be formally verified. Tableaux-based theorem-provers are computational tools which can be used to perform this verification task. (WDF98) propose a proof method based on tableaux for both the epistemic-temporal logics KL(n) and BL(n) . In this work we implement the tableaux-based proof method described in (WDF98) and present an algorithm for verification of epistemic-temporal properties over the structure of the tableau built by this method.
2

\"Um provador de teoremas multi-estratégia\" / A Multi-Strategy Tableau Prover

Seca Neto, Adolfo Gustavo Serra 30 January 2007 (has links)
Nesta tese apresentamos o projeto e a implementação do KEMS, um provador de teoremas multi-estratégia baseado no método de tablôs KE. Um provador de teoremas multi-estratégia é um provador de teoremas onde podemos variar as estratégias utilizadas sem modificar o núcleo da implementação. Além de multi-estratégia, o KEMS é capaz de provar teoremas em três sistemas lógicos: lógica clássica proposicional, mbC e mCi. Listamos abaixo algumas das contribuições deste trabalho: * um sistema KE para mbC que é analítico, correto e completo; * um sistema KE para mCi que é correto e completo; * um provador de teoremas multi-estratégia com as seguintes características: - aceita problemas em três sistemas lógicos: lógica clássica proposicional, mbC e mCi; - tem seis estratégias implementadas para lógica clássica proposicional, duas para mbC e duas para mCi; - tem treze ordenadores que são usados em conjunto com as estratégias; - implementa regras simplificadoras para lógica clássica proposicional; - possui uma interface gráfica que permite a visualização de provas; - é de código aberto e está disponível na Internet em http://kems.iv.fapesp.br; * benchmarks obtidos através da comparação das estratégias para lógica clássica proposicional resolvendo várias famílias de problemas; - sete famílias de problemas para avaliar provadores de teoremas paraconsistentes; * os primeiros benchmarks para as famílias de problemas para avaliar provadores de teoremas paraconsistentes. / In this thesis we present the design and implementation of KEMS, a multi-strategy theorem prover based on the KE tableau inference system. A multi-strategy theorem prover is a theorem prover where we can vary the strategy without modifying the core of the implementation. Besides being multi-strategy, KEMS is capable of proving theorems in three logical systems: classical propositional logic, mbC and mCi. We list below some of the contributions of this work: * an analytic, correct and complete KE system for mbC; * a correct and complete KE system for mCi; * a multi-strategy prover with the following characteristics: - accepts problems in three logical systems: classical propositional logic, mbC and mCi; - has 6 implemented strategies for classical propositional logic, 2 for mbC and 2 for mCi; - has 13 sorters to be used alongside with the strategies; - implements simplification rules of classical propositional logic; - provides a proof viewer with a graphical user interface; - it is open source and available on the internet at http://kems.iv.fapesp.br; * benchmark results obtained by KEMS comparing its classical propositional logic strategies with several problem families; * seven problem families designed to evaluate provers for logics of formal inconsistency; * the first benchmark results for the problem families designed to evaluate provers for logics of formal inconsistency.
3

Aplicação de verificação formal em um sistema de segurança veicular / Application of formal verification in a vehicular safety system

Silva, Nayara de Souza 07 March 2017 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-04-11T19:28:47Z No. of bitstreams: 2 Dissertação - Nayara de Souza Silva - 2017.pdf: 2066646 bytes, checksum: 95e09b89bf69fe61277b09ce9f1812a6 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-04-12T14:32:03Z (GMT) No. of bitstreams: 2 Dissertação - Nayara de Souza Silva - 2017.pdf: 2066646 bytes, checksum: 95e09b89bf69fe61277b09ce9f1812a6 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-04-12T14:32:03Z (GMT). No. of bitstreams: 2 Dissertação - Nayara de Souza Silva - 2017.pdf: 2066646 bytes, checksum: 95e09b89bf69fe61277b09ce9f1812a6 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-07 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / The process of developing computer systems takes into account many stages, in which some are more necessary than others, depending on the purpose of the application. The implementation stage is always necessary, indisputably. Sometimes the requirements analysis and testing phases are neglected. And, generally, the part of formal verification correctness is intended for few applications. The use of model checkers has been exploited in the task of validating a behavioral specification in its appropriate level of abstraction, notably specifications validation of critical systems, especially when they involve the preservation of human life, when the existence of errors entails huge financial loss or when deals with information security. Therefore, it proposes to apply formal verification techniques in the validation of the vehicular safety system Avoiding Doored System, considered as critical, in order to verify if the implemented system faithfully meets the requirements for it proposed. For that, it was used as a tool to verify its correctness the Specification and Verification System - PVS, detailing and documenting all the steps employed in the process of specification and formal verification. K / O processo de desenvolvimento de sistemas computacionais leva em conta muitas etapas, nos quais umas são tidas mais necessárias que outras, dependendo da finalidade da aplica- ção. A etapa de implementação sempre é necessária, indiscutivelmente. Por vezes as fases de análise de requisitos e de testes são negligenciadas. E, geralmente, a parte de verifica- ção formal de corretude é destinada a poucas aplicações. O uso de verificadores de modelos tem sido explorado na tarefa de validar uma especificação comportamental no seu nível adequado de abstração, sobretudo, na validação de especificações de sistemas críticos, principalmente quando estes envolvem a preservação da vida humana, quando a existência de erros acarreta enorme prejuízo financeiro ou quando tratam com a segurança da informa- ção. Diante disso, se propõe aplicar técnicas de verificação formal na validação do sistema de segurança veicular Avoiding Doored System, tido como crítico, com o intuito de atestar se o sistema implementado atende, fielmente, os requisitos para ele propostos. Para tal, foi utilizada como ferramenta para a verificação de sua corretude o Specification and Verification System - PVS, detalhando e documentando todas as etapas empregadas no processo de especificação e verificação formal. Pal
4

\"Um provador de teoremas multi-estratégia\" / A Multi-Strategy Tableau Prover

Adolfo Gustavo Serra Seca Neto 30 January 2007 (has links)
Nesta tese apresentamos o projeto e a implementação do KEMS, um provador de teoremas multi-estratégia baseado no método de tablôs KE. Um provador de teoremas multi-estratégia é um provador de teoremas onde podemos variar as estratégias utilizadas sem modificar o núcleo da implementação. Além de multi-estratégia, o KEMS é capaz de provar teoremas em três sistemas lógicos: lógica clássica proposicional, mbC e mCi. Listamos abaixo algumas das contribuições deste trabalho: * um sistema KE para mbC que é analítico, correto e completo; * um sistema KE para mCi que é correto e completo; * um provador de teoremas multi-estratégia com as seguintes características: - aceita problemas em três sistemas lógicos: lógica clássica proposicional, mbC e mCi; - tem seis estratégias implementadas para lógica clássica proposicional, duas para mbC e duas para mCi; - tem treze ordenadores que são usados em conjunto com as estratégias; - implementa regras simplificadoras para lógica clássica proposicional; - possui uma interface gráfica que permite a visualização de provas; - é de código aberto e está disponível na Internet em http://kems.iv.fapesp.br; * benchmarks obtidos através da comparação das estratégias para lógica clássica proposicional resolvendo várias famílias de problemas; - sete famílias de problemas para avaliar provadores de teoremas paraconsistentes; * os primeiros benchmarks para as famílias de problemas para avaliar provadores de teoremas paraconsistentes. / In this thesis we present the design and implementation of KEMS, a multi-strategy theorem prover based on the KE tableau inference system. A multi-strategy theorem prover is a theorem prover where we can vary the strategy without modifying the core of the implementation. Besides being multi-strategy, KEMS is capable of proving theorems in three logical systems: classical propositional logic, mbC and mCi. We list below some of the contributions of this work: * an analytic, correct and complete KE system for mbC; * a correct and complete KE system for mCi; * a multi-strategy prover with the following characteristics: - accepts problems in three logical systems: classical propositional logic, mbC and mCi; - has 6 implemented strategies for classical propositional logic, 2 for mbC and 2 for mCi; - has 13 sorters to be used alongside with the strategies; - implements simplification rules of classical propositional logic; - provides a proof viewer with a graphical user interface; - it is open source and available on the internet at http://kems.iv.fapesp.br; * benchmark results obtained by KEMS comparing its classical propositional logic strategies with several problem families; * seven problem families designed to evaluate provers for logics of formal inconsistency; * the first benchmark results for the problem families designed to evaluate provers for logics of formal inconsistency.

Page generated in 0.0711 seconds