• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Composite Multi-Objective Optimization: Theory and Algorithms / 複合関数で構成された多目的最適化:理論とアルゴリズム

Tanabe, Hiroki 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24264号 / 情博第808号 / 新制||情||136(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 山下 信雄, 准教授 福田 秀美, 教授 太田 快人 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
2

Studies on block coordinate gradient methods for nonlinear optimization problems with separable structure / 分離可能な構造をもつ非線形最適化問題に対するブロック座標勾配法の研究

Hua, Xiaoqin 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第19123号 / 情博第569号 / 新制||情||100(附属図書館) / 32074 / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 山下 信雄, 教授 中村 佳正, 教授 田中 利幸 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
3

Komprimované snímání v perfuzním zobrazování pomocí magnetické rezonance / Compressed sensing in magnetic resonance perfusion imaging.

Mangová, Marie January 2014 (has links)
Magnetic resonance perfusion imaging is a today's very promising method for medicine diagnosis. This thesis deals with a sparse representation of signals, low-rank matrix recovery and compressed sensing, which allows overcoming present physical limitations of magnetic resonance perfusion imaging. Several models for reconstruction of measured perfusion data is introduced and numerical methods for their software implementation, which is an important part of the thesis, is mentioned. Proposed models are verified on simulated and real perfusion data from magnetic resonance.

Page generated in 0.0717 seconds