1 |
Evaluation of Shortest Path Query Algorithm in Spatial DatabasesLim, Heechul January 2003 (has links)
Many variations of algorithms for finding the shortest path in a large graph have been introduced recently due to the needs of applications like the Geographic Information System (GIS) or Intelligent Transportation System (ITS). The primary subjects of those algorithms are materialization and hierarchical path views. Some studies focus on the materialization and sacrifice the pre-computational costs and storage costs for faster computation of a query. Other studies focus on the shortest-path algorithm, which has less pre-computation and storage but takes more time to compute the shortest path. The main objective of this thesis is to accelerate the computation time for the shortest-path queries while keeping the degree of materialization as low as possible. This thesis explores two different categories: 1) the reduction of the I/O-costs for multiple queries, and 2) the reduction of search spaces in a graph. The thesis proposes two simple algorithms to reduce the I/O-costs, especially for multiple queries. To tackle the problem of reducing search spaces, we give two different levels of materializations, namely, the <i>boundary set distance matrix</i> and <i>x-Hop sketch graph</i>, both of which materialize the shortest-path view of the boundary nodes in a partitioned graph. Our experiments show that a combination of the suggested solutions for 1) and 2) performs better than the original Disk-based SP algorithm [7], on which our work is based, and requires much less storage than <i>HEPV</i> [3].
|
2 |
Evaluation of Shortest Path Query Algorithm in Spatial DatabasesLim, Heechul January 2003 (has links)
Many variations of algorithms for finding the shortest path in a large graph have been introduced recently due to the needs of applications like the Geographic Information System (GIS) or Intelligent Transportation System (ITS). The primary subjects of those algorithms are materialization and hierarchical path views. Some studies focus on the materialization and sacrifice the pre-computational costs and storage costs for faster computation of a query. Other studies focus on the shortest-path algorithm, which has less pre-computation and storage but takes more time to compute the shortest path. The main objective of this thesis is to accelerate the computation time for the shortest-path queries while keeping the degree of materialization as low as possible. This thesis explores two different categories: 1) the reduction of the I/O-costs for multiple queries, and 2) the reduction of search spaces in a graph. The thesis proposes two simple algorithms to reduce the I/O-costs, especially for multiple queries. To tackle the problem of reducing search spaces, we give two different levels of materializations, namely, the <i>boundary set distance matrix</i> and <i>x-Hop sketch graph</i>, both of which materialize the shortest-path view of the boundary nodes in a partitioned graph. Our experiments show that a combination of the suggested solutions for 1) and 2) performs better than the original Disk-based SP algorithm [7], on which our work is based, and requires much less storage than <i>HEPV</i> [3].
|
3 |
FEEDBACK CONTROL DESIGN USING TEMPLATE BOUNDARIES FOUND THROUGH A PRUNING ALGORITHM FOR PLANTS WITH PARAMETRIC UNCERTAINTYCORNEJO, GIANN CARLO January 2003 (has links)
No description available.
|
4 |
Statistical modelling by neural networksFletcher, Lizelle 30 June 2002 (has links)
In this thesis the two disciplines of Statistics and Artificial Neural Networks
are combined into an integrated study of a data set of a weather modification
Experiment.
An extensive literature study on artificial neural network methodology has
revealed the strongly interdisciplinary nature of the research and the applications
in this field.
An artificial neural networks are becoming increasingly popular with data
analysts, statisticians are becoming more involved in the field. A recursive
algoritlun is developed to optimize the number of hidden nodes in a feedforward
artificial neural network to demonstrate how existing statistical techniques
such as nonlinear regression and the likelihood-ratio test can be applied in
innovative ways to develop and refine neural network methodology.
This pruning algorithm is an original contribution to the field of artificial
neural network methodology that simplifies the process of architecture selection,
thereby reducing the number of training sessions that is needed to find
a model that fits the data adequately.
[n addition, a statistical model to classify weather modification data is developed
using both a feedforward multilayer perceptron artificial neural network
and a discriminant analysis. The two models are compared and the effectiveness
of applying an artificial neural network model to a relatively small
data set assessed.
The formulation of the problem, the approach that has been followed to
solve it and the novel modelling application all combine to make an original
contribution to the interdisciplinary fields of Statistics and Artificial Neural
Networks as well as to the discipline of meteorology. / Mathematical Sciences / D. Phil. (Statistics)
|
5 |
Statistical modelling by neural networksFletcher, Lizelle 30 June 2002 (has links)
In this thesis the two disciplines of Statistics and Artificial Neural Networks
are combined into an integrated study of a data set of a weather modification
Experiment.
An extensive literature study on artificial neural network methodology has
revealed the strongly interdisciplinary nature of the research and the applications
in this field.
An artificial neural networks are becoming increasingly popular with data
analysts, statisticians are becoming more involved in the field. A recursive
algoritlun is developed to optimize the number of hidden nodes in a feedforward
artificial neural network to demonstrate how existing statistical techniques
such as nonlinear regression and the likelihood-ratio test can be applied in
innovative ways to develop and refine neural network methodology.
This pruning algorithm is an original contribution to the field of artificial
neural network methodology that simplifies the process of architecture selection,
thereby reducing the number of training sessions that is needed to find
a model that fits the data adequately.
[n addition, a statistical model to classify weather modification data is developed
using both a feedforward multilayer perceptron artificial neural network
and a discriminant analysis. The two models are compared and the effectiveness
of applying an artificial neural network model to a relatively small
data set assessed.
The formulation of the problem, the approach that has been followed to
solve it and the novel modelling application all combine to make an original
contribution to the interdisciplinary fields of Statistics and Artificial Neural
Networks as well as to the discipline of meteorology. / Mathematical Sciences / D. Phil. (Statistics)
|
Page generated in 0.0848 seconds