• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pullout Strength of Welded Wire and Ribbed Strip Reinforcement in Lightweight Cellular Concrete Backfill Behind Mechanically Stabilized Earth Wall

Bueckers, Mathew Robert 11 December 2023 (has links) (PDF)
Lightweight cellular concrete (LCC) is a cement, water, and air entrained mixture that consists of 25-80% voids. The air voids reduce the material strength but also decrease the material weight. Due to its lightweight properties LCC is an attractive alternative to soil backfill for retained structures, such as mechanically stabilized earth (MSE) walls. Although LCC is widely used behind MSE walls, limited information exists regarding the pullout strength of MSE wall reinforcements in LCC backfill. This research attempts to fill the knowledge gap through performing pullout tests on welded wire and ribbed strip reinforcements in MSE walls to determine the pullout friction coefficient (F*), reinforcement pullout behavior, and LCC properties. A large-scale test box (10 feet wide x 12 feet long x 10 feet high) supported by a steel resisting frame, was constructed, and filled with LCC backfill. Both the west and east MSE wall faces consisted of concrete walls. The west wall was supported by 16 ribbed strip reinforcements, while the east wall was supported by nine short, welded wire reinforcements. After backfilling the MSE wall, pullout tests were performed of the 12 ribbed strip reinforcements and all nine welded wire reinforcements. To determine different pullout friction coefficients (F*), different surcharge loads were applied through LCC self-weight, concrete reaction beams, and hydraulic jacks at the top of backfill. After performing the pullout tests on the large-scale test box, additional pullout tests were performed in two smaller (10 feet wide x 6 feet deep x 30 in. tall) MSE walls, each containing four ribbed strip reinforcements to determine the F* of ribbed strip reinforcements at moderate surcharge pressures. Results from these tests produced F* recommendations for ribbed strip and welded wire reinforcements. Additionally, a total of 130 LCC cylinder specimens were used to identify LCC material properties. Results of these tests show that the unconfined compressive strength of LCC is greatly dependent on the cast and cured unit weight, as well as the sample maturity. Comparing the UCS results to other work reveals a wide variation of UCS versus cured density, even though the same ASTM standard was applied for all tests. An equation for the secant modulus of LCC was created using UCS data from this thesis and other research conducted at Brigham Young University (BYU). Direct shear tests were also conducted on LCC cylinders cut to fit the confinement of a direct shear machine. The direct shear test results from this thesis agree with other research conducted at BYU.

Page generated in 0.0968 seconds