• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of External Stress on the Dispersion Characteristics of Photonic Crystal Fiber

chung, hao-sheng 27 July 2010 (has links)
This paper discussed a way of applied stress to control the photonic crystal fiber dispersion curve, so that it can act on the anomalous dispersion or normal dispersion region area. By this way, we can design the pulse compressor and pulse stretcher for higher peak power laser system. Recently, high-power shortpulse laser has become an indispensable tool in many field, using short-pulse laser oscillator, combined with chirped-frequency amplification technology to produce high-power short-pulse laser system can be used for industrial or medical applications. The all-fiber laser system not only provide better pulse quality and also increased pulse laser system on the stability of the environment.
2

A CMOS analog pulse compressor with a low-power analog-to-digital converter for MIMO radar applications

Lee, Sang Min 10 November 2010 (has links)
Multiple-input multiple-output (MIMO) radars, which utilize multiple transmitters and receivers to send and receive independent waveforms, have been actively investigated as a next generation radar technology inspired by MIMO techniques in communication theory. Complementary metal-oxide-semiconductor (CMOS) technology offers an opportunity for dramatic cost and size reduction for a MIMO array. However, the resulting formidable signal processing burden has not been addressed properly and remains a challenge. On the other hand, from a block-level point of view, an analog-to-digital converter (ADC) is required for mixed-signal processing to convert analog signals to digital signals, but an ADC occupies a significant portion of a system's budget. Therefore, improvement of an ADC will greatly enhance various trade-offs. This research presents an alternative and viable approach for a MIMO array from a system architecture point of view, and also develops circuit level improvement techniques for an ADC. This dissertation presents a fully-integrated analog pulse compressor (APC) based on an analog matched filter in a mixed signal domain as a key block for the waveform diversity MIMO radar. The performance gain of the proposed system is mathematically presented, and the proposed system is successfully implemented and demonstrated from the block level to the system level using various waveforms. Various figures of merit are proposed to aid system evaluations. This dissertation also presents a low-power ADC based on an asynchronous sample-and-hold multiplying SAR (ASHMSAR) with an enhanced input range dynamic comparator as a key element of a future system. Overall, with the new ADC, a high level of system performance without severe penalty on power consumption is expected. The research in this dissertation provides low-cost and low-power MIMO solutions for a future system by addressing both system issues and circuit issues comprehensively.

Page generated in 0.0795 seconds