1 |
Investigating Molecular Structures: Rapidly Examining Molecular Fingerprints Through Fast Passage Broadband Fourier Transform Microwave SpectroscopyGrubbs, Garry Smith, II 05 1900 (has links)
Microwave spectroscopy is a gas phase technique typically geared toward measuring the rotational transitions of Molecules. The information contained in this type of spectroscopy pertains to a molecules structure, both geometric and electronic, which give insight into a molecule's chemistry. Typically this type of spectroscopy is high resolution, but narrowband ≤1 MHz in frequency. This is achieved by tuning a cavity, exciting a molecule with electromagnetic radiation in the microwave region, turning the electromagnetic radiation o, and measuring a signal from the molecular relaxation in the form of a free induction decay (FID). The FID is then Fourier transformed to give a frequency of the transition. "Fast passage" is defined as a sweeping of frequencies through a transition at a time much shorter (≤10 s) than the molecular relaxation (≈100 s). Recent advancements in technology have allowed for the creation of these fast frequency sweeps, known as "chirps", which allow for broadband capabilities. This work presents the design, construction, and implementation of one such novel, high-resolution microwave spectrometer with broadband capabilities. The manuscript also provides the theory, technique, and motivations behind building of such an instrument.
In this manuscript it is demonstrated that, although a gas phase technique, solids, liquids, and transient species may be studied with the spectrometer with high sensitivity, making it a viable option for many molecules wanting to be rotationally studied. The spectrometer has a relative correct intensity feature that, when coupled with theory, may ease the difficulty in transition assignment and facilitate dynamic chemical studies of the experiment.
Molecules studied on this spectrometer have, in turn, been analyzed and assigned using common rotational spectroscopic analysis. Detailed theory on the analysis of these molecules has been provided. Structural parameters such as rotational constants and centrifugal distortion constants have been determined and reported for most molecules in the document. Where possible, comparisons have been made amongst groups of similar molecules to try and get insight into the nature of the bonds those molecules are forming. This has been achieved the the comparisons of nuclear electric quadrupole and nuclear magnetic coupling constants, and the results therein have been determined and reported.
|
2 |
Metallic systems at the nano and micro scale: Bimetallic nanoparticles as catalysts and MCrAlY bond coats in thermal barrier coatingsKane, Kenneth 01 January 2019 (has links)
The dissertation is split into two parts. The first part will be focused on changes in material properties found at the nanoscale, as miscibility and electronic structure can change significantly with size. The formation of classically-immiscible bimetallic nanoparticles (BNPs) becomes favorable at the nanoscale and novel catalytic properties can emerge from the bimetallic alloying. The formation of alloyed and non-alloyed BNPs is achieved through pulse laser ablation (PLA) and a significant increase in catalytic activity is observed for both. Recently discovered, the increased activity in the non-alloyed BNPs, deemed multicomponent photocatalysis, is examined and the proposed mechanism discussed. The second part of the talk will focus on thermal barrier coatings (TBCs), which are advanced, multi-layered coatings used to protect materials in high temperature environments. MCrAlY (M=Ni, Co) bond coats deposited via atmospheric plasma spray (APS) are intrinsically rough and initially the roughness provides a high surface area platform for the mechanical interlocking of the yttria stabilized zirconia (YSZ) top coat, which provides the bulk of the thermal insulation. After high temperature exposure, a protective oxide scale forms at the top coat/bond coat interface however the convex asperities of the bond coat can grow non-α-Al2O3 type oxides that can be detrimental for coating lifetime. A surface modification technique that removes the asperities while leaving intact the concavities is used to examine the role that roughness distribution has on 1100°C APS coating lifetime. Lastly, recent work validating a modelling strategy for evaluating 900°C TBC lifetimes, which can typically surpass 25 kh, is presented. Differences in coating-substrate
interdiffusion behavior over 5-20 kh of 900°C exposure are discussed and reproduced with Thermo- Calc/DICTRA for three superalloys (1483, 247, X4) deposited with high velocity oxy fuel (HVOF)
NiCoCrAlY coatings.
|
3 |
Composite condensates and phase transformations via pulsed laser ablation on Zn, Zn-Cu and Cu-Au targets in liquid or vacuumLin, Bo-Cheng 19 August 2012 (has links)
This research deals with the synthesis and characterization (transmission electron microscopy and optical spectroscopy) of composite nanocondensates produced by pulse laser ablation (PLA) on Zn, Zn-Cu and Cu-Au targets in liquid or vacuum.
First, wurtzite-type (W)-ZnO and
|
Page generated in 0.1274 seconds