• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ověření potenciálu pulzní proteolýzy pro studium konformační stability cytochromů b5 / Pulse proteolysis in evaluation of conformational stability of cytochromes b5

Maroušková, Růžena January 2014 (has links)
Mixed-function oxidases play a major role in the metabolism of xenobiotics. The main component of this system is the cytochrome P450, it oxidizes substrates coming into our body to more polar products. Another component of mixed-function system - the cytochrome b5 (cyt b5) is able to modulate the function of cytochrome P450, the mechanism of this modulation is yet unknown. However, it is believed that it could be mediated via transfer of electron or allosteric modulation of cytochrome P450 caused by interaction with cyt b5. The aim of this thesis was to find and prepare analogs of cyt b5, which are unable to transfer electrons to cytochrome P450 and simultaneously are structurally very similar to native cyt b5. The conformational stability of cyt b5 and its analogs was monitored using pulse proteolysis. This method employs proteases to cleave the evaluated protein at varying concentration of a denaturant. For soluble proteins, urea is typically used as denaturant in combination with thermolysin as protease. While for membrane proteins, sodium dodecyl sulfate (SDS) is usually used as denaturant together with subtilisin as protease. The aim of this thesis was to use these methods to compare a conformational stability of the native human cyt b5 with apo-cyt b5 and analogs of the cyt b5 reconstituted...
2

Global Analysis of Protein Folding Thermodynamics for Disease State Characterization and Biomarker Discovery

Adhikari, Jagat January 2015 (has links)
<p>Protein biomarkers can facilitate the diagnosis of many diseases such as cancer and they can be important for the development of effective therapeutic interventions. Current large-scale biomarker discovery and disease state characterization studies have largely focused on the global analysis of gene and protein expression levels, which are not directly tied to function. Moreover, functionally significant proteins with similar expression levels go undetected in the current paradigm of using gene and protein expression level analyses for protein biomarker discovery. Protein-ligand interactions play an important role in biological processes. A number of diseases such as cancer are reported to have altered protein interaction networks. Current understanding of biophysical properties and consequences of altered protein interaction network in disease state is limited due to the lack of reproducible and high-throughput methods to make such measurements. Thermodynamic stability measurements can report on a wide range of biologically significant phenomena (e.g., point mutations, post-translational modifications, and new or altered binding interactions with cellular ligands) associated with proteins in different disease states. Investigated here is the use of thermodynamic stability measurements to probe the altered interaction networks and functions of proteins in disease states. This thesis outlines the development and application of mass spectrometry based methods for making proteome-wide thermodynamic measurements of protein stability in multifactorial complex diseases such as cancer. Initial work involved the development of SILAC-SPROX and SILAC-PP approaches for thermodynamic stability measurements in proof-of-concept studies with two test ligands, CsA and a non-hydrolyzable adenosine triphosphate (ATP) analogue, adenylyl imidodiphosphate (AMP-PNP). In these proof-of-principle studies, known direct binding target of CsA, cyclophilin A, was successfully identified and quantified. Similarly a number of known and previously unknown ATP binding proteins were also detected and quantified using these SILAC-based energetics approaches. </p><p>Subsequent studies in this thesis involved thermodynamic stability measurements of proteins in the breast cancer cell line models to differentiate disease states. Using the SILAC-SPROX, ~800 proteins were assayed for changes in their protein folding behavior in three different cell line models of breast cancer including the MCF-10A, MCF-7, and MDA-MB-231 cell lines. Approximately, 10-12% of the assayed proteins in the comparative analyses performed here exhibited differential stability in cell lysates prepared from the different cell lines. Thermodynamic profiling differences of 28 proteins identified with SILAC-SPROX strategy in MCF-10A versus MCF-7 cell line comparison were also confirmed with SILAC-PP technique. The thermodynamic analyses performed here enabled the non-tumorigenic MCF-10A breast cell line to be differentiated from the MCF-7 and MDA-MB-231 breast cancer cell lines. Differentiation of the less invasive MCF-7 breast cancer cell line from the more highly invasive MDA-MB-231 breast cancer cell line was also possible using thermodynamic stability measurements. The differentially stabilized protein hits in these studies encompassed those with a wide range of functions and protein expression levels, and they included a significant fraction (~45%) with similar expression levels in the cell line comparisons. These proteins created novel molecular signatures to differentiate the cancer cell lines studied here. Our results suggest that protein folding and stability measurements complement the current paradigm of expression level analyses for biomarker discovery and help elucidate the molecular basis of disease.</p> / Dissertation
3

Evaluation of Energetics-based Techniques for Proteome-Wide Studies of Protein-Ligand Binding Interactions

Geer, Michelle Ariel January 2015 (has links)
<p>Detection and quantification of protein-ligand binding interactions is extremely important for understanding interactions that occur in biological systems. Since traditional techniques for characterizing these types of interactions cannot be performed in complex systems such as cell lysates, a series of energetics-based techniques that are capable of assessing protein stability and measuring ligand binding affinities have been developed to overcome some of the limitations of previous techniques. Now that the capabilities of the energetics-based techniques have been exhibited in model systems, the false-positive rates of the techniques, the range of biological questions to which the techniques can be addressed, and the use of the techniques to discover novel interactions in unknown systems remained to be shown. The Stability of Proteins from Rates of Oxidation (SPROX) technique and the Pulse Proteolysis (PP) technique were applied to a wide range of biological questions in both yeast and human cell lysates to evaluate the scope of these experimental workflows. The false-positive rate of iTRAQ-SPROX protein target discovery on orbitrap mass spectrometer systems was determined to be < 0.8 %. The iTRAQ-SPROX technique was successfully applied to the discovery of both known and novel protein-protein, protein-ATP, and protein-drug interactions, leading to the quantification of protein-ligand binding affinities in each of these studies. In the pursuit of discovering geldanamycin protein interactors, the use of iTRAQ-SPROX and SILAC-PP in combination was determined to be advantageous for confirming protein-ligand interactions since the techniques utilize different quantitation strategies that are subject to separate technical errors in quantitation. Finally, the iTRAQ-SPROX and SILAC-PP techniques were used to evaluate the interactions of manassantin A in a human cell lysate. In this work, a previously unknown protein target of manassantin A, Filamin A, was detected as a hit protein using both the iTRAQ-SPROX and SILAC-PP protocols. The work completed in this dissertation has expanded the understanding of the limitations of energetics-based techniques and shown that biological replicate analyses are essential to confirm ligand interactions with novel protein targets.</p> / Dissertation

Page generated in 0.0645 seconds