1 |
Pilot study: identification of anthocyanin metabolites in the mice fed purple-fleshed sweetpotato / Pilot study: identification of anthocyanin metabolites in the mice fed purple-fleshed sweet potatoChen, Tzu-Yu January 1900 (has links)
Master of Science / Department of Human Nutrition / Weiqun Wang / Anthocyanins may prevent chronic diseases such as cancer and cardiovascular disease, however, the anthocyanin metabolites are not well elucidated. We previously selected a purple-fleshed sweet potato clone P40 that contained anthocyanins at up to 7.5 g/kg dry matter, most of which are cyanidin and peonidin derivatives. The main objective of this study is to identify anthocyanin metabolites in the mice fed 20-30% of purple sweet potato P40 (287 mg and 430 mg peonidin-3-glucoside equivalent /kg body weight) diet for 6 weeks. Plasma, liver, and feces were analyzed for anthocyanin metabolites using HPLC/MS and MALDI-TOF-MS. Fifteen hours after consumption of P40 diet, we identified 4 anthocyanin metabolites cyanidin 3,5- diglucoside; cyanidin 3-sophoroside-5-glucoside; cyanidin3-p-hydroxybenzoylsophroside-5-glucoside; and peonidin 3-p-hydroxybenzoylsophroside-5-glucoside in fecal samples. No anthocyanin metabolites were detected in plasma or liver extracts by HPLC/MS or MALDI-TOF-MS. The results indicate that anthocyanin metabolites in fecal samples might provide health benefits for colonic mucosal cells. However, the lack metabolites in both plasma and liver samples suggest a continuous intake of the anthocyanins may be required for systemic benefits due to their quick degradation and low bioavailability.
|
2 |
Anthocyanin-enriched purple sweet potato for colon cancer preventionLim, Soyoung January 1900 (has links)
Doctor of Philosophy / Department of Human Nutrition / Weiqun Wang / Anthocyanins are flavonoid pigments that account for the purple color in many plant foods. It has been investigated that anthocyanins’ predominant occurrences in human diet and their health beneficial activities such as antioxidant, anti-inflammatory, and anti-carcinogenetic effects. Based on those scientific evidences, anthocyanins are now recognized as potential therapeutic compounds. Particularly, the chemopreventive effect of anthocyanins has been widely studied by many researchers in nutrition. However, their bioactivities are diverse due to different chemical structures of anthocyanins from different sources. In this study, we discuss the chemopreventive activity of anthocyanins from purple sweet potato. Previously, we selected a purple-fleshed sweetpotato clone, P40, crossbred seeds obtained from the International Potato Center in Lima, Peru. We hypothesized that anthocyanins enriched P40 may provide health beneficial activities in cancer prevention. For the first part of this study, we analyzed nutrient compositions, dietary fiber content, anthocyanins contents, total phenolics contents and total antioxidant activity. Even thought P40 presents similar composition and amount of nutrients with the control cultivars, white-fleshed O’Henry and yellow-fleshed NC Japanese, HPLC-MS analysis confirmed that it possesses much higher anthocyanin content even up to 7.5g/kg dry matter. Also, dietary fiber, particularly soluble dietary fiber content, total phenolics content, and total antioxidant capacity of P40 were significantly higher. For the second part of the study, we tested the potential anticancer characteristic of P40 cultivar in human colonic SW480 cancer cells and in azoxymethane-induced aberrant crypt foci in mice. Treatment with 0 – 40 μM of peonidin-3-glucoside or P40 extract containing corresponding amount of anthocyanins resulted in inhibition of cell growth in a dose-dependent manner. Interestingly, even though the patterns of growth inhibition were similar in the two treatment groups, the cells treated with P40 extract tend to survive significantly less than those treated with peonidin-3-glucoside. Cell cycle analysis confirmed that the growth inhibition was not due to cytotoxicity, but cytostatic mechanism with increased number at the G1 phase of the cell cycle. The cell cycle arrest was also significantly correlated with the anthocyanin contents in P40 cultivar when compared with the white-fleshed O’Henry and yellow-fleshed NC Japanese controls. After Azoxymethane (AOM) or saline injected mice were fed basal AIN-93M diet or diets containing 10~30% of P40, 20% O’Henry or 20% NC Japanese for 6 weeks, aberrant crypt foci (ACF) multiplicity was significantly inhibited by 10~30% P40 diet. Imunohistochemistry results of colonic mucosa showed that the expression level of apoptosis marker, caspase-3, was significantly induced in the mice treated with 10~20% P40 diet. Also, PCNA expression level, which is proliferation marker, was significantly inhibited by the 30% P40 diet. These findings indicated that consuming a purple sweet potato, P40, may prevent colon cancer by modulating antioxidant status, inducing apoptosis, and reducing cell proliferation.
|
Page generated in 0.0604 seconds